湖南省益阳市资阳区迎丰桥镇九级数学上册 23.2 中心对称 23.2.1 中心对称教案 (新版)新人教版.doc_第1页
湖南省益阳市资阳区迎丰桥镇九级数学上册 23.2 中心对称 23.2.1 中心对称教案 (新版)新人教版.doc_第2页
湖南省益阳市资阳区迎丰桥镇九级数学上册 23.2 中心对称 23.2.1 中心对称教案 (新版)新人教版.doc_第3页
湖南省益阳市资阳区迎丰桥镇九级数学上册 23.2 中心对称 23.2.1 中心对称教案 (新版)新人教版.doc_第4页
湖南省益阳市资阳区迎丰桥镇九级数学上册 23.2 中心对称 23.2.1 中心对称教案 (新版)新人教版.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中心对称 课题: 23.2.1 中心对称课时 1 课 时教学设计课 标要 求了解中心对称、中心对称图形的概念,探索他的基本性质:中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分中心对称的两个图形是全等图形教材及学情分 析1、 教材分析: 本章学习第三种图形变换旋转.它是我们认识和描述物体的形状和位置关系的必要手段,也是我们解决现实生活中的具体问题; 旋转变换在平面几何中有着广泛的应用,特别是在解(证)有关等 腰三角形(主要是等腰直角三角形、等边三角形)以及正方形等问题时,更是经常用到的思维方法. 2、 学情分析 九年级的学生此前已学习了平移、轴对称两种图形变换,对图形变换已具有一定的认识,通过本章的学习,学生对图形变换的认识会更完整,同时,也能对平移、轴对称有更深的认识.但学生的动手作图能力还比较差,利用平移、轴对称的性质解决问题的能力有一定的欠缺。通过本节课的学习,学生希望知道轴对称的性质,并利用性质解决问题,会做出旋转后的图形。课时教学目标1从旋转的角度观察两个图形之间的关系,类比旋转得出中心对称的定义,渗透从一般到特殊的研究问题的方法2通过操作、观察、归纳中心对称的性质,经历由具体到抽象认识问题的过程,会画一个简单几何图形关于某一点对称的图形,提高画图能力重点1利用中心对称、对称中心、关于中心对称点的概念解决一些问题 2中心对称的两条基本性质及其运用难点 中心对称的两条基本性质及其运用 教法学法指导 启发法 归纳法 练习法教具准备 课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课一、复习旋转的相关概念一、导入新课 请同学们独立完成下题如右上图,abc绕点o旋转,使点a旋转到点d处,画出旋转后的三角形,并写出简要作法 复习旋转图形的画法教学过程 二:画旋转图形1、利用旋转的性质画一个图形旋转后的图形2、通过探究和观察,发现中心对称的性质3、证明中心对称的性质分析:本题已知旋转后点a的对应点是点d,且旋转中心也已知,所以关键是找出旋转角和旋转方向本题选择的旋转方向为顺时针方向;旋转角:如图,连结oa、od,则aod即为旋转角根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图作法:(1)连结oa、ob、oc、od;(2)分别以ob、ob为边作bomconaod; (3)分别截取oeob,ofoc; (4)依次连结de、ef、fd;即:def就是所求作的三角形,如上右图所示果,所以,我们可以经过旋转设计出美丽的图案(下图)二、新课教学1中心对称思考:(1)如左图,把其中一个图案绕点o旋转180,你有什么发现?(2)如右图,线段ac,bd相交于点o,oaoc,obod,把ocd绕点o旋转180,你有什么发现? 可以发现,左图中的一个图案旋转后两个图案互相重合;右图中,旋转后ocd也与oab重合像这样,把一个图形绕着某一点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心)这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点例如,右图中ocd和oab关于点o对称,点c与点a是关于点o的对称点2中心对称的性质如下图,三角尺的一个顶点是o,以点o为中心旋转三角尺,可以画出关于点o中心对称的两个三角形:第一步,画出abc; 第二步,以三角尺的一个顶点o为中心,把三角尺旋转180,画出abc;第三步,移开三角尺因为中心对称的两个三角形可以互相重合,所以abc与abc是全等三角形因为点a是点a绕点o旋转180后得到的,线段oa绕点o旋转180得到线段oa,所以点o在线段aa上,且oa = oa,即点o是线段aa的中点同样地,点o也是线段bb和cc的中点。 考察学生对旋转性质的理解 考查学生动手探究的能力教学过程4、利用中心对称的性质画中心对称图形中心对称的性质:中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分中心对称的两个图形是全等图形3实例探究例1 (1)如下左图,选择点o为对称中心,画出点a关于点o的对称点a;(2)如下右图,选择点o为对称中心,画出与abc关于点o对称的abc解:(1)如下左图,连接ao,在ao的延长线上截取oaoa,即可以求得点a关于点o的对称点a(2) 如下右图,作出a,b,c三点关于点o的对称点a,b,c,依次连接ab, bc,ca,就可得到与abc关于点o对称的abc 三:巩固练习 考查学生的作图能力和对本节知识的掌握程度 小结本节课你有什么收获?板书设计 23.2.1 中心对称1 中心对称、对称中心 2中心

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论