Fundamentals of Logic Design Chapter03.ppt_第1页
Fundamentals of Logic Design Chapter03.ppt_第2页
Fundamentals of Logic Design Chapter03.ppt_第3页
Fundamentals of Logic Design Chapter03.ppt_第4页
Fundamentals of Logic Design Chapter03.ppt_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SLIDESFORCHAPTER3BOOLEANALGEBRA continued Clickthemousetomovetothenextpage UsetheESCkeytoexitthischapter Thischapterinthebookincludes ObjectivesStudyGuide3 1MultiplyingOutandFactoringExpressions3 2Exclusive ORandEquivalenceOperations3 3TheConsensusTheorem3 4AlgebraicSimplificationofSwitchingExpressions3 5ProvingtheValidityofanEquationProgrammedExercisesProblems DistributiveLaws Givenanexpressioninproduct of sumsform thecorrespondingsum of productsexpressioncanbeobtainedbymultiplyingout usingthetwodistributivelaws X Y Z XY XZ 3 1 X Y X Z X YZ 3 2 Inaddition thefollowingtheoremisveryusefulforfactoringandmultiplyingout X Y X Z XZ X Y 3 3 Example 3 4 p 63 Inthefollowingexample ifweweretomultiplyoutbybruteforce wewouldgenerate162terms and158ofthesetermswouldthenhavetobeeliminatedtosimplifytheexpression Instead wewillusethedistributivelawstosimplifytheprocess Thesametheoremsthatareusefulformultiplyingoutexpressionsareusefulforfactoring Byrepeatedlyapplying 3 1 3 2 and 3 3 anyexpressioncanbeconvertedtoaproduct of sumsform Exclusive ORandEquivalenceOperations Theexclusive ORoperation isdefinedasfollows Theequivalenceoperation isdefinedby Section3 2 p 64 Wewillusethefollowingsymbolforanexclusive ORgate ThefollowingtheoremsapplytoexclusiveOR Section3 2 p 65 Wewillusethefollowingsymbolforanequivalencegate Section3 2 p 66 Becauseequivalenceisthecomplementofexclusive OR analternatesymboloftheequivalencegateisanexclusive ORgatewithacomplementedoutput Theequivalencegateisalsocalledanexclusive NORgate Example1 Example2 Section3 2 p 66 By 3 6 and 3 17 F A B C A B C B AC B AC A BC A B C AB C B A C B A C A C C A B AB B A C C A B A B AB C A B AB C by 3 6 A B AB C A B AB C by 3 19 A B C ABC A BC AB C Section3 2 p 66 67 Theconsensustheoremcanbestatedasfollows XY X Z YZ XY X Z 3 20 DualForm X Y X Z Y Z X Y X Z 3 21 TheConsensusTheorem ConsensusTheoremProof XY X Z YZ XY X Z X X YZ XY XYZ X Z X YZ XY 1 Z X Z 1 Y XY X Z Section3 3 p 67 Basicmethodsforsimplifyingfunctions Section3 4 p 68 69 1 Combiningterms UsethetheoremXY XY Xtocombinetwoterms Forexample 2 Eliminatingterms UsethetheoremX XY Xtoeliminateredundanttermsifpossible thentrytoapplytheconsensustheorem XY X Z YZ XY X Z toeliminateanyconsensusterms Forexample abc d abcd abd X abd Y c 3 24 a b a bc a b X a b a bc bcd a bd a bc bcd X c Y bd Z a b 3 24 3 Eliminatingliterals UsethetheoremX X Y X Ytoeliminateredundantliterals Simplefactoringmaybenecessarybeforethetheoremisapplied A B A B C D ABCD A B B C D ABCD A B C D ABCD B A ACD A C D B A CD A C D A B BCD A C D 3 26 4 Addingredundantterms Redundanttermscanbeintroducedinseveralwayssuchasaddingxx multiplyingby x x addingyztoxy x z oraddingxytox Whenpossible theaddedtermsshouldbechosensothattheywillcombinewithoreliminateotherterms WX XY X Z WY Z addWZ byconsensustheorem WX XY X Z WY Z WZ eliminateWY Z WX XY X Z WZ eliminateWZ WX XY X Z 3 27 Example 3 28 p69 70 Thefollowingcomprehensiveexampleillustratesuseofallfourmethods ProvingValidityofanEquation Section3 5 p70 Constructatruthtableandevaluatebothsidesoftheequationforallcombinationsofvaluesofthevariables Thismethodisrathertediousifthenumberofvariablesislarge anditcertainlyisnotveryelegant Manipulateonesideoftheequationbyapplyingvarioustheoremsuntilitisidenticalwiththeotherside Reducebothsidesoftheequationindependentlytothesameexpression Oftenwewillneedtodetermineifanequationisvalidforallcombinationsofvaluesofthevariables Severalmethodscanbeusedtodetermineifanequationisvalid 4 Itispermissibletoperformthesameoperationonbothsidesoftheequationprovidedthattheoperationisreversible Forexample itisallrighttocomplementbothsidesoftheequation butitisnotpermissibletomultiplybothsidesoftheequationbythesameexpression MultiplicationisnotreversiblebecausedivisionisnotdefinedforBooleanalgebra Similarly itisnotpermissibletoaddthesametermtobothsidesoftheequationbecausesubtractionisnotdefinedforBooleanalgebra Firstreducebothsidestoasumofproducts oraproductofsums Comparethetwosidesoftheequationtoseehowtheydiffer Thentrytoaddtermstoonesideoftheequationthatarepresentontheotherside Finallytrytoeliminatetermsfromonesidethatarenotpresentontheother Toprovethatanequationisnotvalid itissufficienttoshowonecombinationofvaluesofthevariablesforwhichthetwosidesoftheequationhavedifferentvalues Whenusingmethod2or3abovetoprovethatanequationisvalid ausefulstrategyisto Whatevermethodisused frequentlycomparebothsidesoftheequationandletthedifferentbetweenthemserveasaguideforwhatstepstotakenext Example ShowthatA BD BCD ABC AB D BC D AD A BC Example1 p 71 Solution Startingwiththeleftside DifferencesbetweenBooleanalgebraandordinaryalgebra Section3 5 p72 Aswehavepreviouslyobserved someofthetheoremsofBooleanalgebraarenottrueforordinaryalgebra Similarly someofthetheoremsofordinaryalgebraarenottrueforBooleanalgebra Consider forexample thecancellationlawforordinaryalgebra Ifx y x z theny z 3 31 ThecancellationlawisnottrueforBooleanalgebra Wewilldemonstratethisbyconstructingacounterexampleinwhichx y x zbuty z Letx 1 y 0 z 1 Then 1 0 1 1but0 1 Inordinaryalgebra thecancellationlawformultiplicationisIfxy xz theny z 3 32 Thislawisvalidprovidedx 0 InBooleanalgebra thecancellationlawformultiplicationisalsonotvalidwhenx 0 Letx 0 y 0 z 1 then0 0 0 1 but0 1 Becausex 0abouthalfthetimeinswitching

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论