中考数学总复习第一编篇第三章函数及其图象第六节二次函数的实际应用精讲试题.docx_第1页
中考数学总复习第一编篇第三章函数及其图象第六节二次函数的实际应用精讲试题.docx_第2页
中考数学总复习第一编篇第三章函数及其图象第六节二次函数的实际应用精讲试题.docx_第3页
中考数学总复习第一编篇第三章函数及其图象第六节二次函数的实际应用精讲试题.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六节二次函数的实际应用,怀化七年中考命题规律)年份题型题号考查点考查内容分值总分2011填空16二次函数的实际应用以出售手工艺品为背景求最大利润33命题规律纵观怀化七年中考,此考点仅考查一次而且以填空题的形式呈现,但二次函数的数学模型在初中数学所处的地位以及“学以致用”的原则,此考点不能忽视.命题预测预计2017年会以考查一次函数与二次函数结合的实际应用问题为主,一般设问求函数的表达式,然后通过表达式求最值.,怀化七年中考真题及模拟)二次函数的实际应用(1次)1(2014怀化中考)出售某种手工艺品,若每个获利x元,一天可售出(8x)个,则当x_4_元,一天出售该种手工艺品的总利润y最大2(2016鹤城模拟)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x cm,当x3时,y18,那么当成本为72元时,边长为(A)A6 cmB12 cmC24 cmD36 cm3(2016新晃模拟)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数yx2(x0)若该车某次的刹车距离为5 m,则开始刹车时的速度为(C)A40 m/s B20 m/sC10 m/s D5 m/s4(2016通道模拟)一个小球被抛出后,距离地面的高度h(m)和飞行时间t(s)满足下面函数关系式:h5(t1)26,则小球距离地面的最大高度是(C)A1 m B5 m C6 m D7 m5(2016中方模拟)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位: cm)在550之间每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例在营销过程中得到了表格中的数据薄板的边长(cm)2030出厂价(元/张)5070(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40 cm的薄板,获得的利润是26元(利润出厂价成本价)求一张薄板的利润与边长之间满足的函数关系式;当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?参考公式:抛物线yax2bxc(a0)的顶点坐标是(,)解:(1)设薄板边长为x,出厂价为y,基础价为n,浮动价为kx,则函数关系式为ykxn,由题意得解得函数关系式为y2x10;(2)设利润为P,成本价为mx2,函数关系式为P2x10mx2,将x40,P26代入,解得m,函数关系式为Px22x10.a0,当x25时,P最大35,出厂一张边长为25 cm的薄板,获得利润最大为35元6.(2016怀化一模)某网店试销一种新型商品,进价为20元/件,试销期为18天,销售价y(元/件)与销售天数x(天)满足:当1x9时,yk1x30;当10x18时,y20.在试销期内,销售量p30x.(1)已知当x5或12时,y32.5,求k1,k2的值;(2)分别求当1x9,10x18时,该网店的销售利润w(元)与销售天数x(天)之间的函数关系式;(3)该网店在试销期间,第几天获得的利润最大?最大利润是多少?解:(1)根据题意得32.55k130,解得k1,32.520,解得k2150.综上,k1,k2150;(2)当1x9时,w(y20)p(x3020)(30x),即wx25x300.当10x18时,w(y20)p(2020)(30x),即w150;(3)当1x9时,wx25x300(x5)2312.5.w2,该网店在试销期间,第5天获得的利润最大,最大利润是312.5元,中考考点清单)二次函数的实际应用二次函数的实际应用,题型多为选择、解答题,有以下两种常考类型:(1)单纯二次函数的实际应用;(2)与一次函数结合的实际应用出题形式有三种:(1)以某种产品的销售为背景;(2)以公司的工作业绩为背景;(3)以某公司装修所需材料为背景设问方式主要有:(1)列函数关系式并求值;(2)求最优解;(3)求最大利润及利润最大时自变量的值;(4)求最小值;(5)选择最优方案解二次函数应用题步骤及关键点步骤关键点(1)分析问题明确题中的常量与变量及其它们之间的关系,确定自变量及函数(2)建立模型,确定函数表达式根据题意确定合适的表达式或建立恰当的坐标系(3)求函数表达式变量间的数量关系表示及自变量的取值范围(4)应用性质,解决问题熟记顶点坐标公式或配方法,注意a的正负及自变量的取值范围【方法技巧】(1)利用二次函数解决实际生活中的利润问题,应理清变量所表示的实际意义,注意隐含条件的使用,同时考虑问题要周全,此类问题一般是运用“总利润总售价总成本”或“总利润每件商品所获利润销售数量”,建立利润与价格之间的函数关系式(2)最值:若函数的对称轴在自变量的取值范围内,顶点坐标即为其最值,若顶点坐标不是其最值,那么最值可能为自变量两端点的函数值;若函数的对称轴不在自变量的取值范围内,可根据函数的增减性求解,再结合两端点的函数值对比,从而求解出最值,中考重难点突破)二次函数的实际应用【例】(2016会同模拟)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y2x100.(利润售价制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【解析】(1)根据每月的利润z(x18)y,再把y2x100代入即可求出z与x之间的函数关系式(2)把z440代入z2x2136x1 800,解这个方程即可(3)根据厂商每月的制造成本不超过540万元,以及成本价18元,得出销售单价的取值范围,进而得出最大利润【学生解答】解:(1)z(x18)y(x18)(2x100)2x2136x1 800,故z与x之间的函数表达式为z2x2136x1 800;(2)由z440,得4402x2136x1 800,解这个方程得x128,x240,销售单价定为28元或40元;(3)厂商每月的制造成本不超过540万元,每件制造成本为18元,每月的生产量为:小于等于30万件,y2x10030,解得x35,又由限价40元,得35x40,z2x2136x1 8002(x34)2512,图象开口向下,对称轴右侧z随x的增大而减小,x35时,z最大,为510万元当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.1我市有一种可食用的野生菌,上市时,经销商李经理按市场价格30元/kg收购了这种野生菌1 000 kg存放入冷库中据预测,该野生菌的市场价格将每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3 kg的野生菌损坏不能出售(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式;(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式;(3)李经理将这批野生菌存放多少天出售可获得最大利润W元?(利润销售总额收购成本各种费用)解:(1)y30x(0x160且x为整数);(2)P(30x)(1 0003x)3x2910x30 000;(3)由题意得W(30x)(1 0003x)1 00030310x3(x100)230 000,0x160,当x100时,W最大30 000,李经理将这批野生菌存放100天出售可获得最大利润30 000元2(2016辰溪模拟)为了抓住国家降低汽车购置税,刺激汽车消费的大好机遇,实现新的发展,汽车生产企业策划部拟定了以下两种新的投资方案方案一:生产家用型汽车,每辆汽车成本为a万元(a为常数,且3a8),每辆汽车销售价为10万元,每年最多可生产200辆;方案二:生产豪华型汽车,每辆汽车成本为8万元,每辆汽车销售价为18万元,每年最多可生产120辆假设生产汽车的辆数为x(x为正整数),且生产的汽车可全部售出,又已知年销售x辆豪华型汽车时需上交0.05x2万元的附加税在不考虑其他因素的情况下:(1)分别写出该企业两个投资方案的年利润y1、y2与生产汽车辆数x之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪种投资方案?解:(1)y1(10a)x(0x200),y210x0.05x2(0x120);(2)方案一:最大年利润是:200(10a),方案二:最大年利润是500万元(3)当3a7.5时,选择方案一;当a7.5时,两种方案相同;当7.5a8时,选择方案二3(2016成都中考模拟)在美化校园的活动中,某兴趣小组借助如图所示的直角墙角(两边足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设ABx m. (1)若花园的面积为1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论