全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3三角函数的积化和差与和差化积课堂探究探究一 求值问题1只有同名三角函数和(或差)才能化为积的形式2通常情况下遇积化和差,遇和差化积【例1】 求下列各式的值:(1);(2)sin 20cos 70sin 10sin 50分析:两题符合公式的形式,直接运用公式即可解:(1) tan 152(2)sin 20cos 70sin 10sin 50(sin 90sin 50)(cos 60cos 40)sin 50cos 40探究二 化简问题【例2】 化简下列各式:(1) ;(2) 解:(1)原式tan(2)原式评注 问题(1)是对复杂的含不同角、不同函数的分式进行化简,它的化简过程是第一次化积出现特殊角,从而分子、分母都各为两项,再进行第二次化积,然后约分,达到化简目的问题(2)的分子和分母均为三项,认真观察其角度特点,做好“配对”,然后化积,再与第三项“配对”有因子提出,再分子、分母约分,最后达到化简的目的探究三 证明恒等式【例3】 求证:sin sin(60)sin(60)sin 3分析:根据积化和差公式将左边变形整理,进行角的统一证明:左边sin (cos 120cos 2)sin sin cos 2sin sin 3sin()sin sin 3sin sin 3评注 本题考查积化和差公式的应用,本题证明的关键是向右边目标角的转化与统一探究四 与三角函数有关的综合问题【例4】 求函数ysin x的最值解:ysin xsin x2cossinsin xcossin,因为sin1,1,所以当sin1,即xk,kz时,ymax;当sin1,即xk,kz时,ymin探究五 三角形中的应用【例5】 在abc中,cos acos bsin c,求证:abc是直角三角形分析:看到和,想到和差化积,可以得到cos与cos的关系,再利用半角公式可以得出关于cos a和cos b的因式证明:因为在abc中,abc,所以sin csin(ab)cos acos b因为cos acos b2coscos,所以2sincos2coscos因为coscossin0,所以sincos两边平方,得sin2cos2,所以所以cos(ab)cos(ab)0所以2cos acos b0,所以cos a0或cos b0因为a,b为abc的内角,所以a,b中必有一个是直角所以abc为直角三角形反思本题证明三角形为直角三角形,既然没有边的相对位置关系,就从角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年上海师范大学天华学院单招职业适应性考试题库带答案解析
- 2024年蓬溪县幼儿园教师招教考试备考题库带答案解析(夺冠)
- 2025年江苏工程职业技术学院单招职业倾向性测试题库附答案解析
- 2024年辽宁师范大学马克思主义基本原理概论期末考试题附答案解析(夺冠)
- 2025年重庆信息技术职业学院马克思主义基本原理概论期末考试模拟题附答案解析
- 2024年苏州旅游职业学院马克思主义基本原理概论期末考试题及答案解析(夺冠)
- 2025年南充职业技术学院单招职业倾向性考试题库附答案解析
- 2024年湖南中医药高等专科学校马克思主义基本原理概论期末考试题及答案解析(必刷)
- 2024年遂昌县幼儿园教师招教考试备考题库附答案解析(必刷)
- 2025年集美大学诚毅学院单招综合素质考试题库附答案解析
- 医院保安考试试题及答案
- 家校合力+护航高考+-2025-2026学年高三下学期新年开学家长会
- 2025中国银行四川省分行招聘531人笔试历年典型考题及考点剖析附带答案详解
- 文旅局安全生产培训课件
- 2026 年合规化离婚协议书官方模板
- 高标准农田建设安全文明施工方案
- T-CCCTA 0056-2025 纤维增强纳米陶瓷复合卷材耐蚀作业技术规范
- 2026年旅游度假目的地营销策划方案
- 店铺安全生产制度
- 《铁路、城市轨道交通下穿机场飞行区影响分析研究》
- ESG理论与实务 课件 第7-12章 ESG 信息披露- ESG的全球行动
评论
0/150
提交评论