回归分析课程设计.doc_第1页
回归分析课程设计.doc_第2页
回归分析课程设计.doc_第3页
回归分析课程设计.doc_第4页
回归分析课程设计.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成 绩 评 定 表学生姓名蒋家辉班级学号1009010131专 业信息与计算科学课程设计题目股票市场与人民生活相关的分析评语组长签字:成绩日期 2012 年 6 月 28 日课程设计任务书学 院理学院专 业信息与计算科学学生姓名蒋家辉班级学号1009010131课程设计题目股票市场与人民生活相关的分析实践教学要求与任务:通过该课程设计,使学生进一步理解概率论与数理统计的基本概念、理论和方法;初步掌握Excel统计工作表在随机模拟中是应用,MATLAB统计软件包对数据进行统计检验和统计分析;具备初步的运用计算机完成数据处理的技能,使课堂中学习到理论得到应用。1数据整理:收集数据,录入数据,画出相应图形;建立数学模型,数据的输入与整理,各种数据的图形显示。2假设检验: MATLAB绘制出直方图,做数据分布的推测;参数估计,假设检验,绘制概率密度图。3单因素、多因素方差分析:正态总体的方差分析问题; MATLAB统计软件中关于方差分析的相关命令,做出方差分析表,box图,能对结果进行简单分析。4一元、多元线性回归模型:回归系数的估计与检验,数据散点与回归直线的图示,残差图。运用MATLAB统计软件,对给定的数据拟合回归方程。工作计划与进度安排:周三12节:选题,设计解决问题方法 周三38节:调试程序周四14节:完成论文,答辩指导教师: 2012年6月28日 专业负责人:2012年7月8日学院教学副院长:2012年7月19日目 录1 设计目的12 问题分析23 设计程序33.1 设计步骤33.2 编写程序33.3 得出结果74 结果分析75 设计总结8致 谢9参考文献10摘 要数理统计是具有广泛应用的数学分支,而回归分析问题在其中占有很重要的地位。回归分析是数理统计中研究变量之间相关关系的一种有效方法。在现实世界中,经常出现一些变量,它们相互联系,互相依存,因而它们之间存在着一定的关系。一般说来变量之间的关系大致可分为两类:一是确定性的关系,也就是我们所熟知的函数关系;另一类是非确定性关系,我们称为相关关系。对于具有相关关系的变量,虽然不能找到它们之间的精确表达式,但是通过大量的试验(观测)数据,可以发现它们之间存在一定的统计规律性。对于实际问题非确定性问题居多。它主要分为一元和多元,也分为线性和非线性的回归分析。近年来,我国居民的生活水平有了逐步提高,金融市场体制也逐步完善,全民参与股票投资的趋势也逐步明显,本文借助mathlab软件,建立数学模型,得到股票交易额与居民可支配收入和职工平均工资的线性相关方程。关键词:回归分析;相关关系;多元线性回归;残差图;置信区股票市场与人民生活水平相关的回归分析1 设计目的为了更好的了解概率论与数理统计的知识,熟练掌握概率论与数理统计在实际问题上的应用,并将所学的知识结合MATLAB对数据的处理解决实际问题。本设计是利用二元线性回归理论对股票交易额问题建立数学模型,并用MATLAB分析工具库中的回归分析软件进行解算。设计问题:本文从中经网统计数据库和搜数网中分别采集了1992年至2011年以来在全国的股票交易额(亿元)、居民人均可支配收入(元)、职工平均工资(元)三项指标,数据如下(表格1):表格 1年份股票交易额居民可支配收入职工平均工资19926811826271119933627233733711994812831794538199540363893550019962133248396210199730722516064701998235445245746919993131958548346200060827628093712001383056860108702002279907703124222003321158472140402004423349422160242005316651032719998200690469117592100120075005561378624932200826711315781292292009535987171753273620105456341910936539201160035421004386692 问题分析回归分析一般分为线性回归分析与非线性回归分析。本题采用的是线性回归分析中的二元线性回归。本设计是一道确定血压与年龄和体质指数关系问题,首先用MATLAB绘出残差图,经过一系列的剔除坏点,得到相对准确的数据,再由图分析该数据属于线性回归问题,在MATLAB软件中得出回归方程系数,置信区间与相关性检验所需的数据。然后对其进行多元线性回归分析设计原理:二元线性回归分析模型及参数的确定。二元线性回归分析预测法的回归方程为: 式中:x1,x2自变量; 因变量,即线性回归分析估值,或预测值; a,b1,b2待定回归方程参数。 最小二乘法建立的求参数的方程为: 只需将历史资料自变量2和对应的因变量v的数据代人上面公式,并联立求解方程组,即可求得回归参数a,b1,b2 再将这些参数代人回归方程,即可得预测模型。 3 设计程序3.1 设计步骤 为了研究这些数据中所蕴含的规律,将股票交易额Y看做因变量,(居民可支配收入),(职工平均收入),看做自变量,用MATLAB画出它们的残差图,可见存在异常点,剔除异常点,找出线性回归方程,假定Y与,有如下关系。3.2 编写程序输入命令:y=681,3627,8128,4036,21332,30722,23544,31319,60827,38305,27990,32115,42334,31665,90469,500556,267113,535987,545634,600354,x1=1826,2337,3179,3893,4839,5160,5245,5854,6280,6860,7703,8472,9422,10327,11759,13786,15781,17175,19109,21004x2=2711,3371,4538,5500,6210,6470,7469,8346,9371,10870,12422,14040,16024,19998,21001,24932,29229,32736,36539,38669n=length(y);x=ones(n,1),x1,x2;b,bint,r,rint,s=regress(y,x);b,bint,s输出:b =-132.0000 0. 0132 0. 0167bint =-192.9521 -34.2895 0.0100 0.0212 0.0104 0.0246s =0.5401 87.778 0.0067 9.6720然后继续输入rcoplot(r,rint)其残差图为:残插图 1从图中发现第14,第16个为异常点,剔除它重新计算并画图y=681,3627,8128,4036,21332,30722,23544,31319,60827,38305,27990,32115,42334, 90469, 267113,535987,545634,600354,x1=1826,2337,3179,3893,4839,5160,5245,5854,6280,6860,7703,8472,9422, 11759, 15781,17175,19109,21004x2=2711,3371,4538,5500,6210,6470,7469,8346,9371,10870,12422,14040,16024, 21001, 29229,32736,36539,38669n=length(y);x=ones(n,1),x1,x2;b,bint,r,rint,s=regress(y,x);b,bint,s输出结果为b = 431.7278 -0.0516 0.4209bint =544.0732 329.4734 -0.0915 0.0004 0.3214 0.5593s = 0.8864 78.765 0.0000 5.5107然后继续输入rcoplot(r,rint) 其残差图为:残插图 2从图中发现此时新组数据第14个为异常点,剔除它重新计算并画图y=681,3627,8128,4036,21332,30722,23544,31319,60827,38305,27990,32115,82334, 267113,535987,545634,600354,x1=1826,2337,3179,3893,4839,5160,5245,5854,6280,6860,7703,8472,9422, 15781,17175,19109,21004x2=2711,3371,4538,5500,6210,6470,7469,8346,9371,10870,12422,14040,16024, 28229,32736,36539,38669n=length(y);x=ones(n,1),x1,x2;b,bint,r,rint,s=regress(y,x);b,bint,s输出为b =-207.7964 -0.0660 0.5021bint =-520.2624 , 80.4624-0.1467 , 0.0104 0.0263 , 0.9890s =0.783 61.227 0.0000 3.0837然后继续输入rcoplot(r,rint)其残差图为:残插图 3 此时由图可知已无异常点,所以用这17组数据进行估计结果会比较准确。3.3 得出结果 表格 2回归系数回归系数估计值回归系数置信区间b0-207.7964b1-0.0660b20.5021 依据上面的实验可得出Y关于x1,x2的方程:4 结果分析Matlab的结果表明,参数的估计值b0=-207.7964,b1=-0.0660,b2=0.5021;b0的置信区间为. b1的置信区间为,b2的置信区间为; 因为,故回归模型. .成立。 从残差效果图看出,除掉几个坏点数据外,其余数据的残差离零点都较近,且残差的置信区间均包含零点,这说明回归模型能较好的拟合数据。借助mathlab分析软件,从统计学的角度分析了股票交易额与人民生活水平相关的指标居民人均可支配收入、职工平均工资之间的关系,从而确定了这些变量之间存在的相关性以及决定股票交易额的主要变量。通过基础的分析,得出股票市场的繁荣与职工平均工资息息相关,职工平均工资的提高表现为居民人均可支配收入、居民的生活水平等指标值的提高而股票市场活跃的根本就是职工平均工资的缩影。居民可支配收入是衡量人民生活水平的重要指标,它标志着这个居民即期的消费能力。居民个人的收入提高了还是降低了,有多大的消费能力,就要看这个指标,因为它是可支配的,可用于消费、投资、购买股票、基金、用于存款等。但居民可支配收入和消费者物价指数又是息息相关的,可支配收入增加并不意味你能够买到更多东西。工资是指居民在一个单位领取报酬的是工资收入,工资收入高意味着企业盈利能力较高,而企业盈利能力又是影响股票市场的主要微观因素,因此平均工资的影响比居民可支配收入更有说服力,而本文也论证了这个结果5 设计总结通过对概率论与数理统计的这道实际问题的解决,不仅使我更加深刻的理解了概率论与数理统计的基础知识,而且使我对这些知识在实际中的应用产生了浓厚的兴趣,同时对我学习好概率论与数理统计这门课有很大帮助。致 谢本论文是张玉春老师指导下完成的。她严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。在此,我向张老师致以诚挚的谢意和崇高的敬意。同时我还要感谢我的同学们,在论文设计中,他们给了我很多的建议和帮助。我还要感谢我的论文中被我引用或参考的文献的作者。参考文献1、中国统计年鉴,/year/qg/2009/indexch.htm2、袁志发 多元统计分析科学出版社,2004版3、朱建平 应用多元统计分析科学出版社,2002版4、茆诗松 丁元回归分析及实验设计华东师范大学出版社,1998版5、岳朝龙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论