




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于电流型PWM集成控制器UC3842/3843的隔离单端反激式开关电源摘 要:本文从DC/DC转换器、电流型PWM控制器UC3842开始,着重论述了一种小功率开关电源的基本电路结构及其工作原理。关键词:DC/DC变换器;电流型PWM控制器;开关电源引言-开关电源以其高效率、小体积等优点获得了广泛应用。传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM技术得到了飞速发展。相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。-电流型PWM集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM控制小功率电源已经取代电压型PWM控制小功率电源。Unitrode公司推出的UC3842系列控制芯片是电流型PWM控制器的典型代表。 DC/DC转换器-转换器是开关电源中最重要的组成部分之一,其有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。-电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I流过。M1导通与截止的等效拓扑如图2所示。-电流型PWM-与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一个电感电流反馈环节,并以此电流反馈作为PWM所必须的斜坡函数。-下面分析理想空载下电流型PWM电路的工作情况(不考虑互感)。电路如图3所示。设V导通,则有-LdiL/dt = ui (1)-iL以斜率ui/L线性增长,L为T1原边电感。经无感电阻R1采样Ud=R1iL送到脉宽比较器A2与Ue比较,当UdUe,A2输出高电平,送到RS锁存器的复位端,此时或非门的两个输入中必有一个高电平,经过或非门输出低电平关断功率开关管V。当时钟输出为高电平时,或非门输出始终为低电平,封锁PWM,这段时间由时钟振荡器OSC输出脉冲宽度决定,即PWM信号的死区时间。在振荡器输出脉冲下降同时,或非门两输入均为低电平,经或非门输出为高电平,V导通。-简言之,PWM信号的上升沿由振荡器下降沿决定,而PWM的下降沿由电感电流限值信号和误差信号Ue共同决定,最大脉宽的下降沿受振荡器上升沿控制。图4为其工作时序图。UC3842简介-Unitrode公司的UC3842是一种高性能固定频率电流型控制器,包含误差放大器、PWM比较器、PWM锁存器、振荡器、内部基准电源和欠压锁定等单元,其结构图如图5所示。-各管脚功能简介如下。-1脚COMP是内部误差放大器的输出端,通常此脚与2脚之间接有反馈网络,以确定误差放大器的增益和频响。-2脚FEED BACK是反馈电压输入端,此脚与内部误差放大器同向输入端的基准电压(一般为+2.5V)进行比较,产生控制电压,控制脉冲的宽度。-3脚ISENSE是电流传感端。在外围电路中,在功率开关管(如VMos管)的源极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电压,此电压送入3脚,控制脉宽。此外,当电源电压异常时,功率开关管的电流增大,当取样电阻上的电压超过1V时,UC3842就停止输出,有效地保护了功率开关管。-4脚RT/CT是定时端。锯齿波振荡器外接定时电容C和定时电阻R的公共端。-5脚GND是接地。-6脚OUT是输出端,此脚为图滕柱式输出,驱动能力是lA。这种图腾柱结构对被驱动的功率管的关断有利,因为当三极管VTl截止时,VT2导通,为功率管关断时提供了低阻抗的反向抽取电流回路,加速功率管的关断。-7脚Vcc是电源。当供电电压低于 16V时,UC3824不工作,此时耗电在1mA以下。输入电压可以通过一个大阻值电阻从高压降压获得。芯片工作后,输入电压可在+10+30V之间波动,低于+10V停止工作。工作时耗电约为15mA,此电流可通过反馈电阻提供。-8脚VREF是基准电压输出,可输出精确的+5V基准电压,电流可达50mA。-UV3842的电压调整率可达0.01%,工作频率为500kHz,启动电流小于1mA,输入电压为1030V,基准电压为4.95.1V,工作温度为070,输出电流为1A。-开关稳压电源由UC3842构成的开关电源电路如图6所示,T为高频变压器。刚开机时,220V交流电先通过PNF滤掉射频干扰,再经过整流滤波获得约+300V直流电压,然后经R2降压后向UC3842提供+16V启动电压。R1是限流电阻,C1为滤波电容。正常工作后,自馈线圈N2上的高频电压经过VD1、C1整流滤波,就作为UC3842的正常工作电压。R5、C4用以改善内部误差放大器的频率响应,R1是斜坡补偿电阻。开关频率 。C5为消噪电容,R10是过流检测电阻,R7是VMOS开关功率管的栅极限流电阻。由C8、VD1、R11、VD2、C9构成两级吸收回路,用于吸收尖峰电压。VD1和VD3选用恢复二极管FR305。VD4为输出级的整流管,采用肖特基二极管,以满足高频、大电流整流之需要。-当NMOS管导通时,初级线圈N1电流线性增大,磁场增强,次级线圈中VD4截止,由电容C10向负载供电;此时,脉冲变压器原边回路中VD2亦截止,N1这时起存储能量的作用。当NMOS管截止后,初级线圈电流减小,磁场减弱,次级线圈回路中VD4导通,能量通过VD4及C10向负载释放,输出直流电压,部分能量由VD2向电阻R12和电容C9释放。-为保证开关电源输出直流电压不受干扰,电路中提供了稳压电路。一是采用NMOS管源极串接电阻R9,把电流信号变为电压信号,送入UC3842作为比较电压,控制激励脉冲的占空比,达到稳压目的。二是变压器T中的线圈N2间接采样,起到电压反馈作用,N2间接采样后,经过VD1和C3整流,在C3上取样,该电压一方面经过R3和R4分压送到UC3842的2管脚加到误差放大器A3的反相输入端,另一方面直接送到UC3842的7管脚,作为芯片供电电压。电路刚启动时由输入电压经整流滤波降压给芯片供电,工作后由反馈电压供电,因而UC3842的电源电压反映了输出电压的变化,起到反馈作用,使输出电压稳定。三是在UC3842中,锯齿波发生器输出锯齿波的斜率还与输入电压有关,当输入电压升高时锯齿波斜率增大,使输出激励脉冲占空比减小,从而使输出电压维持稳定,反之亦然,实际上相当于反馈控制。 总结-UC3842是目前流行的电流型PWM信号发生器,具有精度高、电压稳定、外围电路简单、价格低廉等优点,广泛应用在输出电压范围是4.95.1V、功率为2060W的小型功率开关电源中。反激型开关电源反馈回路的改进作者: 王闯瑞,胡荣强,黄庆义,康 超日期:2005-06-06反激型开关电源反馈回路的改进王闯瑞,胡荣强,黄庆义,康超(武汉理工大学自动化学院,湖北 武汉 430070)摘要:介绍了一种基于PWM控制芯片UC3842的反激式开关电源的反馈控制回路改进设计。该电路采用光耦和电压基准TL431组成反馈网络,具有反馈精度高,动态响应快,实用性强等优点。关键词:单端反激;UC3842;光耦;反馈中图分类号:文献标识码:A New Feedback Circuit of Flyback Switching Mode Power SupplyWANG Chuang-rui, HU Rong-qiang, HUANG Qing-yi, KANG Chao(College of Automation, Wuhan University of Technology,Wuhan 430070 China)Abstract: A new feedback circuit ,which is designed based on PWM controller UC3842, of flyback switching mode power supply is presented. This feedback circuit is made of optical coupler and TL431.Power supply with it has excellent dynamic response, and also outputs accurate voltage .Moreover, its a practical circuit.Keywords: single-ended flyback; UC3842;optical coupler;feedback 电源是所有电子设备的动力来源,电源的性能直接影响到整个电子设备的可靠性和寿命。近几年,随着电源技术的飞速发展,高效率的开关稳压电源已逐步替代了传统的线性调节稳压电源,并得到广泛的应用,而开关稳压电源的反馈回路决定了开关电源的精度和整体性能。本文介绍的是一种基于电流型PWM芯片UC3842的开关电源的反馈回路设计。1UC3842原理与特性UC3842是一种高性能的固定频率电流型脉宽集成控制芯片,是专为离线式直流变换电路设计的。其主要优点是电压调整率可达0.01%,工作频率高达500 kHz,启动电流小于1 mA,外围元件少。它适用于2080 W的小功率开关电源。其工作温度为0+70 ,最高输入电压为30 V,最大输出电流为1 A,能驱动双极型功率管或MOS管。UC3842采用DIP-8封装,其外部引脚图如图1所示。图UC3842外部引脚图各管脚功能简介如下:脚1:输出/补偿,内部误差放大器的输出端。通常此脚与脚2之间接有反馈网络,以确定误差放大器的增益和频响;脚2:电压反馈输入端。此脚与内部误差放大器同向输入端的基准电压(一般为+2.5 V)进行比较,产生控制电压,控制脉冲的宽度;脚3:电流取样输入端。在外围电路中,在功率开关管的源极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电压,此电压送入脚3,控制脉宽。当功率开关管的电流增大,取样电阻上的电压超过1 V时UC3842就停止输出,有效地保护功率开关管;脚4:RT/CT。锯齿波振荡器外接定时电容C和定时电阻R的公共端;脚5:接地脚;脚6:输出端。此脚为图腾柱式输出,驱动能力是土1 A;脚7:UCC,电源引脚。当开关电源启动时脚7供电电压应高于+16 V,若低于+16 V,则UC3842不能启动,此时耗电在1 mA以下。芯片工作后,VCC由反馈绕组提供,可在+l030 V之间波动,低于+l0 V停止工作,功耗为15 mW2; 脚8:Uref,基准电压输出。此脚可输出精确的+5 V基准电压,电流可达50 mA。UC3842的内部结构框图如图所示1。图UC3842内部结构框图2 基于UC3842的开关电源常用的电路典型结构UC3842的典型应用电路图如图3所示。 图3 UC3842的典型应用电路该应用电路的工作原理是:直流电压U经电阻Rin降压后加到UC3842的供电端(脚7),为UC3842提供大于16 V的启动电压,启动过程完成后反馈绕组为UC3842提供维持正常工作的电压。当输出电压升高时,单端反激式变压器T1的反馈绕组上产生的感应电压也升高,该电压经R1及R3分压后作为采样电压,送入UC3842的脚2,在与基准电压比较后,经误差放大器放大,使UC3842的脚6输出驱动脉冲的占空比变小,输出电压下降,使输出电压稳定。同样,当输出电压降低时,使脚6输出脉冲的占空比变大,输出电压上升,最终使输出电压稳定在设定值。此电路结构简单,容易布线,成本低。但是UC3842的采样电压不是从输出端直接取得,输出电压稳压精度不高,当电源的负载变化较大时很难实现精确稳压,该电路只适用于负载变化不大的场合。3 采用光耦和电压基准进行反馈控制的电路为了满足负载变化较大时的供电要求,提高输出电压的稳定度,我们设计了一种从副边绕组输出端取样进行反馈控制的电路。电路如图4所示,电压采样及反馈电路由光耦PC817、TL431及与之相连的阻容网络构成。其控制原理如下:输出电压经R9、R10分压后得到采样电压,此采样电压与TL431提供的2.5 V参考电压进行比较,当输出电压正常(5 V) 时,采样电压与TL431提供的2.5 V参考电压相等则TL431的K极电位不变,流过光耦二极管的电流不变,流过光耦CE的图4采用光耦和电压基准构成的反馈电路电流不变,UC3842的脚1电位稳定,输出驱动的占空比不变,输出电压稳定在设定值不变。当输出V电压因为某种原因偏高时,经分压电阻R9、R10分压值就会大于2.5 V,则TL431的K极电位下降,流过光耦二极管的电流增大,则流过光耦CE的电流增大,UC3842的脚1电位下降,脚输出驱动脉冲的占空比下降,输出电压降低,这样就完成了反馈稳压的作用。在使用UC3842来控制开关电源的占空比时,常规的用法是在UC3842的脚1、2之间加RC网络,用光耦和TL431等元件组成电源的反馈控制回路,把光耦的C极接到UC3842的脚作为输出电压的反馈。图4 所示的电路没有采用这种接法,而是把光耦的C极直接连到UC3842的脚作为输出的电压反馈,脚2直接接地。从图2 可以看出UC3842的脚2是其内部误差放大器的反向输入端,脚1是误差放大器的输出端。这种接法略过了UC3842内部的放大器,这是因为放大器用作信号传输时都有它的传输时间,输出与输入并不是同时建立,不用UC3842的内部放大器,其好处是把反馈信号的传输耗时缩短了一个放大器的传输时间,从而使电源的动态响应更快。另外,TL431内部本身就有一个高增益误差放大器,只不过它与高压侧隔离了,因此反馈信号经TL431内的放大器和光耦后直接控制UC3842内部误差放大器的输出端(脚1),其控制精度并不会降低。而使用UC3842内部误差放大器,则反馈信号连续通过了两个高增益误差放大器,增加了传输时间。 该电路通过输出端采样然后通过光电隔离反馈到UC3842的脚1,略过了UC3842内部的放大器,缩短了传输时间使电源的动态响应更快。同时利用TL431内部的高增益误差放大器,保证了很高的控制精度。这种电路拓扑结构简单、外接元件较少,而且在电压采样电路中采用了三端可调电压基准,使得输出电压在负载发生较大的变化时,输出电压基本上没有变化。实验证明该电路具有很好的稳压效果。4 实验结果按照文中图4所设计的开关电源在交流220 V输入,额定负载(3 A)时的输出电压波形如图5所示。该电路空载输出电压为5.01 V, 额定负载输出电压为4.96 V, 负载调整率为1.0 %。 图5输出电压波形图5 结束语本文介绍了一种基于UC3842的反激开关电源的反馈回路设计,采用此种反馈回路的电源电路结构简单,成本低,动态响应快,控制精度高,适用于各种小型反激式开关电源。参考文献:1张占松,蔡宣三. 开关电源的原理与设计M. 北京:电子工业出版社,1998.2刘贤兴,李众,李捷辉.新型智能开关电源技术M.北京:机械工业出版社,2003.作者简介:王闯瑞 男,1979年出生,河南开封人,硕士,研究方向为控制理论与控制工程。UC3842应用于电压反馈电路中的探讨 王朕,潘孟春,单庆晓 (国防科技大学机电工程与自动化学院,湖南 长沙 410073) 1 概述 通常,PWM型开关电源把输出电压的采样作为PWM控制器的反馈电压,该反馈电压经PWM控制器内部的误差放大器后,调整开关信号的占空比以实现输出电压的稳定。但不同的电压反馈电路,其输出电压的稳定精度是不同的。本文首先对电流型脉宽控制器UC3842(内部电路图如图1所示)常用的三种稳定输出电压电路作了介绍,分析其各自的优缺点,在此基础上设计了一种新的电压反馈电路,实验证明这种新的电路具有很好的稳压效果。 图1 UC3842电路结构图 2 UC3842常用的电压反馈电路 2.1 输出电压直接分压作为误差放大器的输入 如图2所示,输出电压Vo经R2及R4分压后作为采样信号,输入UC3842脚2(误差放大器的反向输入端)。误差放大器的正向输入端接UC3842内部的2.5V的基准电压。当采样电压小于2.5V时,误差放大器正向和反向输出端之间的电压差经放大器放大后,调节输出电压,使得UC3842的输出信号的占空比变大,输出电压上升,最终使输出电压稳定在设定的电压值。R3与C1并联构成电流型反馈。 图2 输出电压直接分压采样 这种电路的优点是采样电路简单,缺点是输入电压和输出电压必须共地,不能做到电气隔离。势必引起电源布线的困难,而且电源工作在高频开关状态,容易引起电磁干扰,必然带来电路设计的困难,所以这种方法很少使用。 2.2 辅助电源输出电压分压 作为误差放大器的输入如图3所示,当输出电压升高时,单端反激式变压器T的辅助绕组上产生的感应电压也升高,该电压经过D2,D3,C15,C14,C13和R15组成的整流、滤波和稳压网络后得到一直流电压,给UC3842供电。同时该电压经R2及R4分压后作为采样电压,送入UC3842的脚2,在与基准电压比较后,经误差放大器放大,使脚6输出脉冲的占空比变小,输出电压下降,达到稳压的目的。同样,当输出电压降低时,使脚6输出脉冲的占空比变大,输出电压上升,最终使输出电压稳定在设定的值。 图3 辅助电源输出电压分压采样 这种电路的优点是采样电路简单,副边绕组、原边绕组和辅助绕组之间没有任何的电气通路,容易布线。缺点是并非从副边绕组直接得到采样电压,稳压效果不好,实验中发现,当电源的负载变化较大时,基本上不能实现稳压。该电路适用于针对某种固定负载的情况。 2.3 采用线性光耦改变误差放大器的输入误差 电压如图4所示,该开关电源的电压采样电路有两路:一是辅助绕组的电压经D1,D2,C1,C2,C3,R9组成的整流、滤波和稳压后得到16V的直流电压给UC3842供电,另外,该电压经R2及R4分压后得到一采样电压,该路采样电压主要反映了直流母线电压的变化;另一路是光电耦合器、三端可调稳压管Z和R4,R5,R6,R7,R8组成的电压采样电路,该路电压反映了输出电压的变化;当输出电压升高时,经电阻R7及R8分压后输入Z的参考电压也升高,稳压管的稳压值升高,流过光耦中发光二极管的电流减小,流过光耦中的光电三极管的电流也相应的减小,误差放大器的输入反馈电压降低,导致UC3842脚6输出驱动信号的占空比变小,于是输出电压下降,达到稳压的目的。 图4 采用辅助电源采样和光耦采样综合 该电路因为采用了光电耦合器,实现了输出和输入的隔离,弱电和强电的隔离,减少了电磁干扰,抗干扰能力较强,而且是对输出电压采样,有很好的稳压性能。缺点是外接元器件增多,增加了布线的困难,增加了电源的成本。 3 线性光耦改变误差放大器增益电压反馈电路及实验结果 3.1 采用线性光耦改变误差放大器的增益 如图5所示,该电压采样及反馈电路由R2,R5,R6,R7,R8,C1,光电耦合器、三端可调稳压管Z组成。当输出电压升高时,输出电压经R7及R8分压得到的采样电压(即Z的参考电压)也升高,Z的稳压值也升高,流过光耦中发光二极管中的电流减小,导致流过光电三极管中的电流减小,相当于C1并联的可变电阻的阻值变大(该等效电阻的阻值受流过发光二极管电流的控制),误差放大器的增益变大,导致UC3842脚6输出驱动信号的占空比变小,输出电压下降,达到稳压的目的。当输出电压降低时,误差放大器的增益变小,输出的开关信号占空比变大,最终使输出电压稳定在设定的值。因为,UC3842的电压反馈输入端脚2接地,所以,误差放大器的输入误差总是固定的,改变的是误差放大器的增益(可将线性光耦中的光电三极管视为一可变电阻),其等效电路图如图6所示。 图5 采用光耦改变误差放大器的增益 图6 改变误差放大器增益的等效电路 该电路通过调节误差放大器的增益而不是调节误差放大器的输入误差来改变误差放大器的输出,从而改变开关信号的占空比。这种拓扑结构不仅外接元器件较少,而且在电压采样电路中采用了三端可调稳压管,使得输出电压在负载发生较大的变化时,输出电压基本上没有变化。实验证明与上述三种反馈电路相比,该电路具有很好的稳压效果。 3.2 实验结果 将这种新的采用线性光耦改变误差放大器增益的电压反馈电路,用于一48V/12V的单端反激式DC/DC开关电源(最大输出电流5A),显示该电源输出电压稳定,带负载能力强。图7(a)(h)分别给出了当负载为100,25,10,3时的输出电压和驱动波形,从波形可以看出,当负载电流逐渐增大时,驱动信号的占空比相应增大,但输出电压始终稳定在12.16V。 (a) 100时的输出波形 (b) 100时的驱动波形 (c) 25时的输出波形 (d) 25时的驱动波形 (e) 10时的输出波形 (f) 10时的驱动波形 (g) 3时的输出波形 (h) 3时的驱动波形 图7 不同负载时的输出电压和驱动波形 4 结语 在单端隔离式PWM型电源中,电流型脉宽调制器UC3842有着广阔的应用范围,本文在分析了三种常用的电压反馈电路的基础上,设计了一种新的采用线性光耦改变UC3842误差放大器增益的电压反馈电路。实验证明,新的电压反馈电路使得稳压精度高,负载适应性强。 作者简介 王朕(1979),男,国防科技大学电力电子与电力传动专业在读硕士,研究方向为开关电源的混沌控制。 潘孟春,男,国防科技大学电机工程与自动化学院教授,长期从事开关电源及交流调速的研究。 单庆晓(1973),男,国防科技大学博士生,研究方向为级联型逆变器、电力电子多重化技术及故障诊断。车载电源系统开关电源的设计作者:武汉理工大学智能信息系统研究所 廖传书 程鑫阅读:356引用:0发布时间:2006-10-01 01:19出处:今日电子目前世界各国正在研究48VDC汽车用电源系统,欧共体计划从2008年开始采用48VDC电源系统。如何在48VDC电源系统下兼容12VDC电子设备成为了一个课题。通过线性稳压电源实现48VDC/12VDC的转换会产生很大的功率损耗,缺点明显。本文提出了一种具有过载和短路保护的车载电源系统的开关电源设计方案。该方案采用单端反激式结构实现48VDC/12VDC的转换,输出电压稳定,波纹小,不间断,性能可靠且电源损耗小。 UC3842的保护电路设计1 UC3842的典型应用UC3842是高性能的单端输出式电流控制型脉宽调制(PWM)芯片,其典型应用电路如图1所示。图1 UC3842典型应用电路2 过载保护原理分析当出现输出短路时,输出电压会下降,同时为UC3842供电的反馈绕组也会出现输出电压下降。当输入电压低于10V时,UC3842停止工作,开关管截止。短路现象消失后,电源重新启动,自动恢复正常工作。但由于在高频关断的时候会出现很高的尖峰电压,即使占空比很小的情况下,电路中7脚的输入电压也可能不会降到足够低,过载保护电路并不总能有效的响应所出现的过载情况,对整个系统的性能会产生不良的影响,存在着一定的安全隐患。3 过流保护原理分析当电流取样端3脚上的电压值超过电流检测比较器负端的电压时,可以使脉宽调制锁存器输入复位信号,开关管于是被关闭。这样峰值检测电路限制输出的最大电流,起到了一定的保护作用。但是随着开关频率的升高,可能会出现开关电源处于连续模式下,也就是每个开关周期的初级电感电流是从一定的幅度开始增长,这样会产生分谐波振荡。这种不稳定性和稳压器的闭环特性无关,它是由固定频率和峰值电流取样同时工作引起的。图2说明了这样的现象。图2 补偿前的电流波形如图2所示,在t0时刻,开关管被导通,这时初级线圈电流以斜率m1上升,该斜率是输入电压和电感的函数。在t1时刻,电流取样输入到达了电流检测比较器的门限,将导致开关管关闭,电流以斜率m2衰减,直到下一个开关周期的到来。如果有一个扰动加在电流检测比较器的门限电压上,产生了一个小的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年人睡眠照顾课件
- 《大学物理实验2》课程简介与教学大纲
- 老年人春节安全预防
- 老年人护理知识培训活动课件
- 酿酒知识培训目的课件
- 汇源PET新产品命名方向再讨论
- 实数高频基础考题分类训练(12种类型60道)解析版八年级数学上册提分专项训练
- 红米需要泡几个小时
- 天津市2025年中考历史试卷及答案
- 人物传记(第二单元)-2025-2026学年八年级语文上册阅读素养通关训练(原卷版)
- 北师大版数学一年级上全册每课练习试题
- 修剪指甲培智五年级上册生活适应教案
- 《昆虫记》整本书阅读教学设计
- DB61-T 1295-2019保水采煤技术规范
- 八年级上册英语开学第一课
- 民事纠纷委托律师合同书
- 《统计学(第二版)》全套教学课件
- 应知应会质量管理
- 跨文化传播-导论课件
- 博士后出站研究报告
- 危险货物道路运输规则jtt617-2018
评论
0/150
提交评论