




已阅读5页,还剩55页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4 2一维单原子链 晶格具有周期性 晶格的振动具有波的形式 格波 格波的研究 先计算原子之间的相互作用力 根据牛顿定律写出原子运动方程 最后求解方程 一维无限原子链 每个原子质量m 平衡时原子间距a 原子之间的作用力 第n个原子离开平衡位置的位移 第n个原子和第n 1个原子间的相对位移 第n个原子和第n 1个原子间的距离 平衡位置时 两个原子间的互作用势能 发生相对位移后 相互作用势能 常数 简谐近似 振动很微弱 势能展式中只保留到二阶项 相邻原子间的作用力 平衡条件 原子的运动方程 只考虑相邻原子的作用 第n个原子受到的作用力 第n个原子的运动方程 每一个原子运动方程类似 方程的数目和原子数相同 方程解和振动频率 设方程组的解 naq 第n个原子振动位相因子 得到 格波的波速 波长的函数 一维简单晶格中格波的色散关系 即振动频谱 格波的意义 连续介质波 波数 格波和连续介质波具有完全类似的形式 一个格波表示的是所有原子同时做频率为 的振动 格波方程 格波的波形图 简谐近似下 格波是简谐平面波 向上的箭头代表原子沿X轴向右振动 向下的箭头代表原子沿X轴向左振动 格波波长 格波波矢 格波相速度 不同原子间位相差 格波方程 相邻原子的位相差 波矢的取值和布里渊区 格波 相邻原子位相差 原子的振动状态相同 格波2 Green 波矢 格波1 Red 波矢 相邻原子位相差 相邻原子的位相差 两种波矢的格波中 原子的振动完全相同 波矢的取值 相邻原子的位相差 第一布里渊区 只研究清楚第一布里渊区的晶格振动问题 其它区域不能提供新的物理内容 玻恩 卡门 Born Karman 周期性边界条件 q的取值 一维单原子晶格看作无限长 所有原子是等价的 每个原子的振动形式都一样 实际的晶体为有限 形成的链不是无穷长 链两头的原子不能用中间原子的运动方程来描述 N个原子头尾相接形成一个环链 保持了所有原子等价的特点 处理问题时要考虑到环链的循环性 N很大 原子运动近似为直线运动 设第n个原子的位移 再增加N个原子之后 第N n个原子的位移 则有 要求 h为整数 波矢的取值范围 h N个整数值 波矢q 取N个不同的分立值 第一布里渊区包含N个状态 每个波矢在第一布里渊区占的线度 第一布里渊区的线度 第一布里渊区状态数 波矢 格波的色散关系 频率是波数的偶函数 色散关系曲线具有周期性 q空间的周期 频率极小值 频率极大值 只有频率在之间的格波才能在晶体中传播 其它频率的格波被强烈衰减 一维单原子晶格看作成低通滤波器 色散关系 讨论 A 格波传播频率和速度 当 一维单原子格波的色散关系与连续介质中弹性波的色散关系一致 1 格波 长波极限情况 连续介质的伸长弹性模量 连续介质介质密度 一个波长内包含许多原子 晶格看作是连续介质 B 长波极限下 相邻两个原子之间的位相差 2 格波 短波极限情况 物理意义 1 相邻两个原子振动的位相相反 2 此时格波形成驻波 B 相邻两个原子之间的位相差 A 格波传播频率和速度 3 布里渊区 原子位移和简正坐标的关系 第q个格波引起第n个原子位移 第n个原子总的位移 令 原子坐标和简正坐标的线性变换 线性变换为么正变换 则 Q简正坐标 动能和势能的形式都有平方和的形式 N项独立的模式 具有正交性 原子位移为实数 则 2 正交性 1 1 证明1 原子位移为实数 则 同时可写为 2 证明2 A 当q q 时 2 显然成立 B 当q q s时 证明完毕 下面证明 动能和势能的形式都有平方和的形式 动能的正则坐标表示 2 1 动能具有平方和的形式 势能 将代入得到 哈密顿量 系统复数形式的简正坐标 系统势能 实数形式的简正坐标 令 哈密顿量 能量本征值 声子 晶格振动的能量量子 或格波的能量量子 一个格波是一种振动模 称为一种声子 能量为 当这种振动模处于时 说明有个声子 本征态函数 由N个原子组成的一维单原子链 其振动模式为N个相互独立的 正交 格波 格波的振幅对应着简正坐标 一个简正坐标对应一个谐振子方程 波函数是以简正坐标为宗量的谐振子波函数 振动能级是量子化的 1 声子是晶格振动的能量量子 声子的概念 2 一种格波即一种振动模式称为一种声子 对于由N个原子组成的一维单原子链 有N个格波 即有N种声子 nj 声子数 晶体中所有原子共同参与的同一频率的简谐振动称为一种振动模式 能量本征值 3 当电子或光子与晶格振动相互作用时 总是以为单元交换能量 5 声子的作用过程遵从能量守恒和准动守恒 6 由N个原子组成的一维单原子链 晶格振动的总能量为 4 声子具有能量 也具有准动量 但声子只是反映晶体原子集体运动状态的激发单元 它不能脱离固体而单独存在 它并不是一种真实的粒子 只是一种准粒子 4 3一维双原子链声学波和光学波 一维复式格子的情形 一维无限长链 两种原子m和M M m 构成一维复式格子 M原子位于2n 1 2n 1 2n 3 m原子位于2n 2n 2 2n 4 同种原子间的距离2a 晶格常数 系统有N个原胞 N个原胞 有2N个独立的方程 两种原子振动的振幅A和B一般来说是不同的 第2n 1个M原子的方程 第2n个m原子的方程 方程解的形式 A B有非零的解 系数行列式为零 第2n 1个M原子 第2n个m原子 方程的解 一维复式晶格中存在两种独立的格波 与q之间存在着两种不同的色散关系 一维复式格子存在两种独立的格波 光学波 声学波 两种格波的振幅 光学波 声学波 相邻原胞之间位相差 M和m原子振动方程 q的取值 波矢q的值 第一布里渊区 采用周期性边界条件 布里渊区大小 h为整数 每个波矢在第一布里渊区占的线度 第一布里渊区允许的q值的数目 晶体中的原胞数目 对应一个q有两支格波 一支声学波和一支光学波 总的格波数目为2N 原子的数目 2N q的取值 A 长波极限 1 声学波 应用 声学波的色散关系与一维布喇菲格子形式相同 色散关系的特点 长波极限下声学波中相邻原子的振动 原胞中的两个原子振动的振幅相同 振动方向一致 代表原胞质心的振动 2 光学波 长波极限 长光学波同种原子振动位相一致 相邻原子振动相反 原胞质心保持不变的振动 原胞中原子之间相对运动 色散关系的特点 B 短波极限 两种格波的频率 因为M m 不存在格波 频率间隙 一维双原子晶格叫做带通滤波器 短波极限 1 声学波 说明 A 0 质量小的原子不动 短波极限 1 光学波 说明 B 0 质量大的原子不动 例题一维复式格子中 如果计算1 光学波频率的最大值和最小值 声学波频率的最大值 2 相应声子的能量 和 3 在下 三种声子数目各为多少 4 如果用电磁波激发光学波 要激发的声子所用的电磁波波长在什么波段 1 声学波的最大频率 光学波的最大频率 光学波的最小频率 2 相应声子的能量 3 认为声子是独立的 形成无相互作用的声子气体 不受泡利原理的限制 属于玻色子系统 声子数不守恒 当系统处于热平衡状态时 频率为的格波的平均声子数由玻色统计给出 而其平均能量为 光学波频率的声子数目 声学波频率的声子数目 4 如果用电磁波激发光学波 要激发的声子所用的电磁波波长在什么波段 对应电磁波的能量和波长 要激发的声子所用的电磁波波长在远红外线波段 近红外光区 0 75 2 5 m 中红外光区 2 5 25 m 远红外光区 25 1000 m 4 4三维晶格的振动 三维复式格子 各原子偏离格点的位移 晶体的原胞数目 原子的质量 第l个原胞的位置 原胞中各原子的位置 一个原胞中有n个原子 第k个原子运动方程 原子在三个方向上的位移分量 一个原胞中有3n个类似的方程 方程右边是原子位移的线性齐次函数 其方程的解 将方程解代回3n个运动方程 3n个线性齐次方程 系数行列式为零条件 得到3n个 长波极限 3个 趋于一致 三个频率对应的格波描述不同原胞之间的相对运动 3支声学波 3n 3支光学波 描述一个原胞中各原子间的相对运动 结论 晶体中一个原胞中有n个原子组成 对每一个q 有3支声学波和3n 3支光学波 波矢 波矢空间的3个基矢 三维晶格中的波矢 倒格子基矢 3个系数 采用波恩 卡曼边界条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青少年男生生殖器官健康教育
- 《簪花之美》少儿美术教育绘画课件创意教程教案
- brand kpis for travel portals aeromexico vacations in mexico-外文版培训课件(2025.2)-worldreportmarket
- 2025年中国观赏水族箱项目投资可行性研究报告
- 2025年中国蜂窝活性炭市场调查研究报告
- 2025年中国苄基三甲基氯化铵市场现状分析及前景预测报告
- 2025年中国自动牙签盒数据监测研究报告
- 2025年中国聚烯烃半导电可剥离屏蔽料数据监测研究报告
- 2025年中国罗拉锯条市场现状分析及前景预测报告
- 2025年中国组合辙叉项目投资可行性研究报告
- 招聘需求分析报告
- 药品追溯系统培训课件模板
- 2024信息安全意识培训ppt课件完整版含内容
- 软件系统需求调研方案
- 运动药学的教学案例设计
- 电线电缆载流量及其计算常用数据
- 光学显微镜智能化改造方案
- 火龙罐综合灸疗法
- 《计算机组装与维护》计算机CPU教案
- 大学《数字信号处理》课程考试试卷(含答案)
- 2022年呼和浩特市赛罕区消防救援大队招聘政府专职消防员考试真题
评论
0/150
提交评论