中考数学专题突破导学练第23讲矩形菱形正方形二试题.doc_第1页
中考数学专题突破导学练第23讲矩形菱形正方形二试题.doc_第2页
中考数学专题突破导学练第23讲矩形菱形正方形二试题.doc_第3页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料参考中考数学专题突破导学练第23讲矩形菱形正方形二试题- 1 -AFDAFB,SABF=SADF,故正确,EC,=,SCDF=2SCEF,SADF=4SCEF,SADF=2SCDF,故错误正确,故选C【例2】(20_.湖南怀化)如图,四边形ABCD是正方形,EBC是等边三角形(1)求证:ABEDCE;(2)求AED的度数【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质【分析】(1)根据正方形、等边三角形的性质,可以得到AB=BE=CE=CD,ABE=DCE=30,由此即可证明;(2)只要证明EAD=ADE=15,即可解决问题;【解答】(1)证明:四边形ABCD是正方形,ABC是等边三角形,BA=BC=CD=BE=CE,ABC=BCD=90,EBC=ECB=60,ABE=ECD=30,在ABE和DCE中,ABEDCE(SAS)(2)BA=BE,ABE=30,BAE=75,BAD=90,EAD=9075=15,同理可得ADE=15,AED=1801515=150考点二、有关特殊平行四边形的综合运用【例3】(20_四川南充)如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB(1)求证:EFAG;(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EFAG是否成立(只写结果,不需说明理由)?(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当SPAB=SOAB,求PAB周长的最小值【考点】LO:四边形综合题【分析】(1)由正方形的性质得出AD=AB,EAF=ABG=90,证出,得出AEFBAG,由相似三角形的性质得出AEF=BAG,再由角的互余关系和三角形内角和定理证出AOE=90即可;(2)证明AEFBAG,得出AEF=BAG,再由角的互余关系和三角形内角和定理即可得出结论;(3)过O作MNAB,交AD于M,BC于N,则MNAD,MN=AB=4,由三角形面积关系得出点P在线段MN上,当P为MN的中点时,PAB的周长最小,此时PA=PB,PM=MN=2,连接EG,则EGAB,EG=AB=4,证明AOFGOE,得出=,证出=,得出AM=AE=,由勾股定理求出PA,即可得出答案【解答】(1)证明:四边形ABCD是正方形,AD=AB,EAF=ABG=90,点E、G分别是边AD、BC的中点,AF=AB=, =,AEFBAG,AEF=BAG,BAG+EAO=90,AEF+EAO=90,AOE=90,EFAG;(2)解:成立;理由如下:根据题意得: =,=,又EAF=ABG,AEFBAG,AEF=BAG,BAG+EAO=90,AEF+EAO=90,AOE=90,EFAG;(3)解:过O作MNAB,交AD于M,BC于N,如图所示:则MNAD,MN=AB=4,P是正方形ABCD内一点,当SPAB=SOAB,点P在线段MN上,当P为MN的中点时,PAB的周长最小,此时PA=PB,PM=MN=2,连接EG、PA、PB,则EGAB,EG=AB=4,AOFGOE,=,MNAB,=,AM=AE=_2=,由勾股定理得:PA=,PAB周长的最小值=2PA+AB=+4中考热点】(20_山东枣庄)在矩形ABCD中,B的角平分线BE与AD交于点E,BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=(结果保留根号)【考点】LB:矩形的性质;KI:等腰三角形的判定;S9:相似三角形的判定与性质【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据EFDGFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可【解答】解:延长EF和BC,交于点G矩形ABCD中,B的角平分线BE与AD交于点E,ABE=AEB=45,AB=AE=9,直角三角形ABE中,BE=,又BED的角平分线EF与DC交于点F,BEG=DEFADBCG=DEFBEG=GBG=BE=由G=DEF,EFD=GFC,可得EFDGFC设CG=_,DE=2_,则AD=9+2_=BCBG=BC+CG=9+2_+_解得_=BC=9+2(3)=故答案为:【达标检测】一、 选择题:1. (20_广西百色)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为(1,3)【考点】Q3:坐标与图形变化平移【分析】将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,根据平移规律即可求出点C的对应点坐标【解答】解:在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),OC=OA=2,C(0,2),将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,点C的对应点坐标是(1,3)故答案为(1,3)2.3. (20_山东临沂)如图,在平面直角坐标系中,反比例函数y=(_0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,OMN的面积为10若动点P在_轴上,则PM+PN的最小值是()A6B10C2D2【分析】由正方形OABC的边长是6,得到点M的横坐标和点N的纵坐标为6,求得M(6,),N(,6),根据三角形的面积列方程得到M(6,4),N(4,6),作M关于_轴的对称点M,连接NM交_轴于P,则NM的长=PM+PN的最小值,根据勾股定理即可得到结论【解答】解:正方形OABC的边长是6,点M的横坐标和点N的纵坐标为6,M(6,),N(,6),BN=6,BM=6,OMN的面积为10,6_6_6_6_(6)2=10,k=24,M(6,4),N(4,6),作M关于_轴的对称点M,连接NM交_轴于P,则NM的长=PM+PN的最小值,AM=AM=4,BM=10,BN=2,NM=2,故选C【点评】本题考查了反比例函数的系数k的几何意义,轴对称最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键4. (20_山东泰安)如图,正方形ABCD中,M为BC上一点,MEAM,ME交AD的延长线于点E若AB=12,BM=5,则DE的长为()A18BCD【考点】S9:相似三角形的判定与性质;KQ:勾股定理;LE:正方形的性质【分析】先根据题意得出ABMMCG,故可得出CG的长,再求出DG的长,根据MCGEDG即可得出结论【解答】解:四边形ABCD是正方形,AB=12,BM=5,MC=125=7MEAM,AME=90,AMB+CMG=90AMB+BAM=90,BAM=CMG,B=C=90,ABMMCG,=,即=,解得CG=,DG=12=AEBC,E=CMG,EDG=C,MCGEDG,=,即=,解得DE=故选B二、填空题:5. (20_贵州安顺)如图所示,正方形ABCD的边长为6,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为6【考点】PA:轴对称最短路线问题;KK:等边三角形的性质;LE:正方形的性质【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点此时PD+PE=BE最小,而BE是等边ABE的边,BE=AB,由正方形A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论