




免费预览已结束,剩余13页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌十九中2013届高三(上)第四次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1(5分)已知复数z=i,是z的共轭复数,则z2=()ab+zcd考点:复数的基本概念专题:计算题分析:由题意,可先根据复数的乘法计算出z2的值,再与四个选项进行比较得出答案解答:解:z=iz2=i=i=(+i)又=+iz2=故选c点评:本题考查复数的乘法与除法以及复数的基本概念,准确进行复数的相关计算是解题的关键2(5分)已知集合a=x|1,b=x|1x0,则()abca=bdab=考点:集合的包含关系判断及应用专题:计算题分析:根据题意,由分式不等式的解法解1可得集合a,又由集合b,分析可得a=b,即可得答案解答:解:根据题意,10,解可得1x0,即集合a=x|1x0,又由b=x|1x0,则a=b;故选c点评:本题考查集合之间关系的判断,注意正确求解分式不等式1,得到集合a3(5分)(2012九江一模)曲线y=xlnx在点(e,e)处的切线与直线x+ay=1垂直,则实数a的值为()a2b2cd考点:利用导数研究曲线上某点切线方程;直线的一般式方程与直线的垂直关系专题:计算题分析:先求出已知函数y在点(e,e)处的斜率,再利用两条直线互相垂直,斜率之间的关系求出未知数a解答:解:y=1+lnx,令x=e解得在点(e,e)处的切线的斜率为2切线与直线x+ay=1垂直2()=1,解得a=2故选a点评:本题主要考查了利用导数研究曲线上某点切线方程,以及导数的几何意义:在切点处的导数值为切线的斜率,两直线垂直斜率乘积为1,属于基础题4(5分)(2012九江一模)已知函数,则该函数是()a非奇非偶函数,且单调递增b偶函数,且单调递减c奇函数,且单调递增d奇函数,且单调递减考点:奇偶性与单调性的综合专题:证明题分析:由题意,根据题设条件及选项可判断出,可先由定义判断函数的奇偶性,再由函数的单调性的判断方法判断出函数是一个增函数,由此可以判断出正确选项解答:解:此函数的定义域是r当x0时,有f(x)+f(x)=12x+2x1=0当x0时,有f(x)+f(x)=12x+2x1=0由上证知,此函数是一个奇函数,又x0时,函数12x是一个增函数,最小值是0;x0时,函数2x1是一个增函数,最大值为0,所以函数函数在定义域上是增函数综上,函数在定义域上是增函数,且是奇函数故选c点评:本题考查函数奇偶性与单调性的判断,熟练掌握函数奇偶性判断方法与函数单调性的判断方法是解题的关键5(5分)(2012九江一模)已知9,a1,a2,a3,1五个实数成等差数列,9,b1,b2,b3,1五个实数成等比数列,则等于()abcd考点:等比数列的性质;等差数列的性质专题:计算题分析:设成等差数列的公差为d,成等比数列的公比为q,则由题意可得1=9+4d,解得 d=2,由1=9q4 解得 q2=,再由=,运算求得结果解答:解:设成等差数列的公差为d,成等比数列的公比为q,则由题意可得1=9+4d,解得 d=2由1=9q4 解得 q2=,=,故选d点评:本题主要考查等差数列的定义和性质,等差数列的通项公式,等比数列的定义和性质,等比数列的通项公式,属于中档题6(5分)(2012九江一模)一个物体的底座是两个相同的几何体,它的三视图及其尺寸(单位:dm)如图所示,则这个物体的体积为()a(120+16)dm3b(120+8)dm3c(120+4)dm3d(60+8)dm3考点:由三视图求面积、体积专题:图表型分析:由已知中的三视图,我们易判断已知中几何体的形状,然后根据已知的三视图分析出几何体的相关几何量,代入体积公式,即可求出该几何体的体积解答:解:由已知可得已知的几何体是两个相同的几何体,即一个半圆柱和长方体的组合体,其下部的左右两个半圆柱正好组成一个整圆柱,它的底面半径为2,高为2,上部的长方体长、宽、高分别为:15,4,2则v圆柱=222=8v长方体=1524=120则v=(120+8)dm3故选b点评:本题考查的知识是由三视图求体积,其中根据已知中的三视图分析几何体的形状是解答本题的关键7(5分)若函数f(x)=x2+ax+b有两个不同的零点x1,x2,且1x1x23,那么在f(1),f(3)两个函数值中()a只有一个小于1b至少有一个小于1c都小于1d可能都大于1考点:一元二次方程的根的分布与系数的关系专题:计算题分析:由题意可得f(x)=(xx1)(xx2),利用基本不等式可得故f(1)f(3)1,由此可得两个函数值f(1)、f(3)中至少有一个小于1解答:解:由题意可得函数f(x)=(xx1)(xx2),f(1)=(1x1)(1x2)=(x11)(x21),f(3)=(3x1)(3x2),f(1)f(3)=(x11)(x21)(3x1)(3x2)=(x11)(3x1)(x21)(3x2) =11=1,即 f(1)f(3)1故f(1),f(3)两个函数值中至少有一个小于1,故选:b点评:本题主要考查一元二次方程根的分布与系数的关系,本题解题的关键是把函数表示成两点式,利用基本不等式求出函数的最值,属于中档题8(5分)(2012九江一模)设变量x,y满足|x2|+|y2|1,则的最大值为()abcd考点:柯西不等式的几何意义专题:数形结合分析:先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案解答:解:如图即为满足不等|x2|+|y2|1的可行域,是一个正方形,得a(1,2),b(2,1),c(3,2),d(2,3)当x=1,y=2时,则=,当x=2,y=1时,则=,当x=3,y=2时,则=,当x=2,y=3时,则=,则有最大值故选b点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:由约束条件画出可行域求出可行域各个角点的坐标将坐标逐一代入目标函数验证,求出最优解9(5分)(2012九江一模)函数f(x)=sinx+cosx+|sinxcosx|对任意的xr都有f(x1)f(x)f(x2)成立,则|x2x1|的最小值为()ab1c2d4考点:三角函数的周期性及其求法专题:计算题分析:先将函数写出分段函数,再确定|x2x1|的最小值为相邻最小值与最大值处横坐标差的绝对值,由此可得结论解答:解:由题意,f(x)=对任意的xr都有f(x1)f(x)f(x2)成立,所以f(x1)是最小值,f(x2)是最大值|x2x1|的最小值为相邻最小值与最大值处横坐标差的绝对值由于x=时,函数取得最大值2,x=时,sinx=cosx=,函数取得最小值|x2x1|的最小值为=故选a点评:本题考查绝对值函数,考查三角函数的性质,确定|x2x1|的最小值为相邻最小值与最大值处横坐标差的绝对值是关键10(5分)(2012九江一模)已知f(x)是定义在(0,+)上的单调函数,且对任意的x(0,+),都有ff(x)log2x=3,则方程f(x)f(x)=2的解所在的区间是()a(0,)b(,1)c(1,2)d(2,3)考点:根的存在性及根的个数判断;对数函数图象与性质的综合应用专题:计算题分析:根据题意,由单调函数的性质,可得f(x)log2x为定值,可以设t=f(x)log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,对其求导可得f(x);将f(x)与f(x)代入f(x)f(x)=2,变形化简可得log2x=0,令h(x)=log2x,由二分法分析可得h(x)的零点所在的区间为(1,2),结合函数的零点与方程的根的关系,即可得答案解答:解:根据题意,对任意的x(0,+),都有ff(x)log2x=3,又由f(x)是定义在(0,+)上的单调函数,则f(x)log2x为定值,设t=f(x)log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,f(x)=,将f(x)=log2x+2,f(x)=代入f(x)f(x)=2,可得log2x+2=2,即log2x=0,令h(x)=log2x,分析易得h(1)=0,h(2)=10,则h(x)=log2x的零点在(1,2)之间,则方程log2x=0,即f(x)f(x)=2的根在(1,2)上,故选c点评:本题考查二分法求函数的零点与函数零点与方程根的关系的应用,关键点和难点是求出f(x)的解析式二、填空题(本大题共4小题,每小题5分,共20分把答案填在题中的横线上)11(5分)已知偶函数y=f(x)满足条件f(x+1)=f(x1),且当x1,0时,则的值等于考点:奇偶性与单调性的综合;函数的值专题:函数的性质及应用分析:由f(x+1)=f(x1)可判断f(x)的周期为2,再由偶函数性质可把化为f(),代入已知表达式求出即可解答:解:由f(x+1)=f(x1),得f(x+2)=f(x),所以f(x)是以2为周期的周期函数,又f(x)为偶函数,所以=f(log35)=f(log352)=f()=+=,故答案为:点评:本题考查函数的奇偶性及对数函数的求值,考查学生的运算能力,属中档题12(5分)已知tan=2,则sin2+sincos2cos2=考点:同角三角函数间的基本关系专题:计算题分析:利用“1=sin2+cos2”,再将弦化切,利用条件,即可求得结论解答:解:sin2+sincos2cos2=tan=2=sin2+sincos2cos2=故答案为:点评:本题重点考查同角三角函数间基本关系,解题的关键是利用“1=sin2+cos2”,再将弦化切,属于基础题13(5分)(2012九江一模)执行如图所示的程序框图,输入n的值为2012,则输出s的值是2011考点:循环结构专题:图表型分析:由已知中的程序框图及已知中输入2012,可得:进入循环的条件为i2012,即i=1,2,2011,模拟程序的运行结果,即可得到输出的s值解答:解:当i=1时,s=;当i=2时,s=;当i=3时,s=;当i=2010时,s=;当i=2011时,s=2011;当i=2012时,退出循环,则输出的s为:2011故答案为:2011点评:本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理14(5分)(2012九江一模)已知点g是abc的外心,是三个单位向量,且满足2,|=|如图所示,abc的顶点b、c分别在x轴和y轴的非负半轴上移动,o是坐标原点,则|的最大值为2考点:向量在几何中的应用专题:综合题分析:确定点g是bc的中点,abc是直角三角形,a是直角,bc=2,根据abc的顶点b、c分别在x轴和y轴的非负半轴上移动,可得oa经过bc的中点g时,|取得最大值,故可得结论解答:解:点g是abc的外心,且满足2,|点g是bc的中点,abc是直角三角形,a是直角是三个单位向量,|=|bc=2abc的顶点b、c分别在x轴和y轴的非负半轴上移动g的轨迹是以原点为圆心1为半径的圆|=1oa经过bc的中点g时,|取得最大值,最大值为2故答案为:2点评:本题考查向量在几何中的应用,解题的关键是判断三角形的形状,属于中档题三、选做题(请考生在下列两题中任选一题作答,若两题都做,则按第一题计分本题共5分)15(5分)(1)已知实数x,y满足,则x+y的最小值为多少(2)在极坐标系中(,)(02),曲线(cos+sin)=2与(sincos)=2的交点的极坐标为考点:极坐标刻画点的位置;基本不等式专题:函数的性质及应用分析:(1)令 =m0,=n0,则有 m+n=4,表示一条线段ab,要使x+y,只要m2+n2最小而m2+n2的最小值等于原点到线段ab的距离的平方,由此求得m2+n2的最小值,即可求得x+y 的最小值(2)把两个曲线的极坐标方程化为直角坐标方程,解方程组求得交点的直角坐标,再化为极坐标解答:解:(1)令 =m0,=n0,则有 m+n=4,表示一条线段ab,a(4,0)、b(0,4),且 x+y=2要使x+y,只要m2+n2最小 而m2+n2表示原点与线段ab上的点之间距离的平方,故m2+n2的最小值等于原点到线段ab的距离,等于 =8,故x+y 的最小值为 2=2(2)曲线(cos+sin)=2 即 x+y2=0,与(sincos)=2 即 yx2=0,即 xy+2=0解方程组 可得 ,故交点的坐标为(0,2),故它的极坐标为 (2,)点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,把参数方程化为直角坐标方程,求点的极坐标,属于基础题四、解答题(本大题共6小题,共75分解答题写出文字说明、证明过程或演算步骤)16(12分)(2012九江一模)设函数f(x)=sin(x+)2sin2x(1)求函数f(x)的最小正周期;(2)若函数y=g(x)的图象与函数y=f(x)的图象关于原点对称,求s=g(1)+g(2)+g(2012)的值考点:三角函数中的恒等变换应用;函数的值;三角函数的周期性及其求法专题:计算题分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式为 sin(x+)1,由此求得f(x)的最小正周期(2)在函数y=g(x)的图象上任取一点(x,g(x),则它关于原点的对称点(x,g(x)在函数y=f(x)的图象上,由此求得 g(x)=sin(x)+1,由此求得函数g(x)的周期为4,求出g(1)+g(2)+g(3)+g(4)的值,即可求得s=g(1)+g(2)+g(2012)的值解答:解:(1)函数f(x)=sin(x+)2sin2x=sinx+cosx2=(sinx+cosx)1=sin(x+)1,故函数f(x)的最小正周期t=4(2)函数y=g(x)的图象与函数y=f(x)的图象关于原点对称,在函数y=g(x)的图象上任取一点(x,g(x),则它关于原点的对称点(x,g(x)在函数y=f(x)的图象上,即点(x,g(x)的坐标满足函数y=f(x)的解析式,故有g(x)=sin(x+)1=sin(x)1,g(x)=sin(x)+1,故函数g(x)的周期为4g(1)=sin()+1=+1,g(2)=sin(2)+1=+1,g(3)=sin(3)+1=1,g(4)=sin(4)+1=1,g(1)+g(2)+g(3)+g(4)=4s=g(1)+g(2)+g(2012)=503(g(1)+g(2)+g(3)+g(4)=5034=2012点评:本题主要考查三角函数的恒等变换及化简求值,利用函数的周期性求函数值,属于中档题17(12分)已知数列an中,数列bn满足(1)求证:数列bn是等差数列;(2)求数列an中的最大项和最小项,并说明理由考点:数列递推式;数列的函数特性;等差关系的确定专题:等差数列与等比数列分析:(1)把给出的变形得anan1=2an11,然后直接求bn+1bn,把bn+1和bn用an+1和an表示后整理即可得到结论;(2)求出数列bn的通项公式,则数列an的通项公式可求,然后利用数列的函数特性可求其最大项和最小项解答:(1)证明:由,得:anan1=2an11,则an+1an=2an1又,bn+1bn=1数列bn是等差数列;(2)解:,又数列bn是公差为1的等差数列,则=,当n=4时,取最大值3,当n=3时,取最小值1故数列an中的最大项是a4=3,最小项是a3=1点评:本题考查数列递推式,考查等差数列的证明,考查了数列的函数特性,正确确定数列的通项,利用数列的函数特性求出数列的最大值和最小值是该题的难点所在,是中档题18(12分)(2012九江一模)已知数列an的前n项和为sn,且满足sn=2an1(nn+)(1)求数列an的通项公式an;(2)设bn=,数列bn的前n项和tn,求证:tn1考点:数列与不等式的综合;数列的求和;数列递推式专题:综合题分析:(1)根据数列递推式,再写一式,两式相减,即可求得数列的通项;(2)确定数列的通项,利用叠加法求和,证明是递增数列,即可证得结论解答:(1)解:当n=1时,a1=s1=2a11,a1=1当n2时,an=snsn1=(2an1)(2an11),an=2an1数列an是首项为a1=1,公比为2的等比数列,数列an的通项公式是an=2n1;(2)证明:bn=2()tn=b1+b2+bn=2()+()+()=2()1tn+1tn=bn+1=0数列tn是递增数列t1=tn1点评:本题考查数列的通项,考查数列的求和,考查不等式的证明,解题的关键是确定数列的通项,属于中档题19(12分)(2012九江一模)如图所示,已知六棱锥pabcdef的底面是正六边形,pa平面abc,ab=2,pa=2,m是pa的中点(1)求证:平面pcd平面mbe;(2)设pa=ab,当二面角dmef的大小为135,求的值考点:用空间向量求平面间的夹角;平面与平面平行的判定专题:综合题分析:(1)证明平面pcd平面mbe,利用面面平行的判定定理,证明一个平面内的两条相交直线平行于另一平面即可;(2)不妨设ab=2,则pa=2,以a为坐标原点,ae,ab,ap所在直线分别为x,y,z轴,建立空间直角坐标系,求出平面dme的法向量,平面fme的法向量为,利用向量夹角公式,建立方程,即可求得结论解答:(1)证明:连接ad交be于点g,连接mg,则点g是正六边形的中心,所以g是线段ad的中点m是pa的中点,mgpdpd平面mbe,mg平面mbepd平面mbedcbe,dc平面mbe,be平面mbedc平面mbepddc=d平面pcd平面mbe;(2)解:不妨设ab=2,则pa=2,在正六边形abcdef中,连接ae,过点f作fhae,垂足为h,则fh=afsinfae=1,ah=afcosfae=,ae=2,以a为坐标原点,ae,ab,ap所在直线分别为x,y,z轴,建立空间直角坐标系,则a(0,0,0),e(2,0,0),d(2,2,0),f(,1,0),m(0,0,)=(,0,),=(0,2,0),=(,1,0)设平面dme的法向量为,由得,取z=2,则同理可得平面fme的法向量为=二面角dmef的大小为1352=60,点评:本题考查面面平行,考查面面角,解题的关键是掌握面面平行的判定方法,确定平面的法向量,属于中档题20(13分)(2011安徽)设,其中a为正实数()当a=时,求f(x)的极值点;()若f(x)为r上的单调函数,求a的取值范围考点:利用导数研究函数的极值;利用导数研究函数的单调性;一元二次不等式的解法专题:计算题分析:()首先对f(x)求导,将a=代入,令f(x)=0,解出后判断根的两侧导函数的符号即可()因为a0,所以f(x)为r上为增函数,f(x)0在r上恒成立,转化为二次函数恒成立问题,只要0即可解答:解:对f(x)求导得f(x)=ex()当a=时,若f(x)=0,则4x28x+3=0,解得结合,可知 所以,是极小值点,是极大值点()若f(x)为r上的单调函数,则f(x)在r上不变号,结合与条件a0知ax22ax+10在r上恒成立,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年远程医疗服务在分级诊疗中的政策支持与挑战应对报告
- 村委会承包水田合同协议
- 村里的股权转让合同范本
- 环评合同终止协议书模板
- 电商代运营收费合同范本
- 环保案件调解协议书范本
- 经济法劳务合同补充协议
- 砖厂购买煤夹子合同范本
- 稀土厂废料出售合同范本
- 项目停工解除协议书范本
- 《水利水电工程可行性研究报告编制规程》
- 2024版住建部二手房买卖合同范本
- 仪表工线路培训
- 2024年初升高数学衔接教材讲义
- 铁路技术规章:018铁路军事运输管理办法
- 农行反洗钱培训
- 中学暑假安全教育家长会
- 2024年城市建设和环境提升重点工程项目计划表
- 租地合同书样本电子版
- GB/T 7247.2-2024激光产品的安全第2部分:光纤通信系统(OFCS)的安全
- 数独题目高级50题(后附答案)
评论
0/150
提交评论