高考数学一轮复习 8.2 空间几何体的表面积与体积课件 理 新人教B版.ppt_第1页
高考数学一轮复习 8.2 空间几何体的表面积与体积课件 理 新人教B版.ppt_第2页
高考数学一轮复习 8.2 空间几何体的表面积与体积课件 理 新人教B版.ppt_第3页
高考数学一轮复习 8.2 空间几何体的表面积与体积课件 理 新人教B版.ppt_第4页
高考数学一轮复习 8.2 空间几何体的表面积与体积课件 理 新人教B版.ppt_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8 2空间几何体的表面积与体积 2 知识梳理 考点自测 1 多面体的表 侧 面积因为多面体的各个面都是平面 所以多面体的侧面积就是 表面积是侧面积与底面面积之和 2 圆柱 圆锥 圆台的侧面展开图及侧面积公式 所有侧面的面积之和 2 rl rl r1 r2 l 3 知识梳理 考点自测 3 柱 锥 台和球的表面积和体积 sh 4 r2 4 知识梳理 考点自测 1 与体积有关的几个结论 1 一个组合体的体积等于它的各部分体积的和或差 2 底面面积及高都相等的两个同类几何体的体积相等 2 长方体的外接球 1 球心 体对角线的交点 3 正四面体的外接球与内切球 正四面体可以看作是正方体的一部分 5 知识梳理 考点自测 2 3 4 1 5 1 判断下列结论是否正确 正确的画 错误的画 1 如果圆柱的一个底面积为s 侧面展开图是一个正方形 那么这个圆柱的侧面积是2 s 2 设长方体的长 宽 高分别为2a a a 其顶点都在一个球面上 则该球的表面积为3 a2 3 若一个球的体积为4 则它的表面积为12 4 在 abc中 ab 2 bc 3 abc 120 使 abc绕直线bc旋转一周所形成的几何体的体积为9 5 将圆心角为 面积为3 的扇形作为圆锥的侧面 则圆锥的表面积等于4 答案 6 知识梳理 考点自测 2 3 4 1 5 答案 解析 2 一个几何体的三视图如图所示 其中主视图和左视图是腰长为2的两个全等的等腰直角三角形 俯视图是圆心角为的扇形 则该几何体的侧面积为 7 知识梳理 考点自测 2 3 4 1 5 3 2017全国 理8 已知圆柱的高为1 它的两个底面的圆周在直径为2的同一个球的球面上 则该圆柱的体积为 答案 解析 8 知识梳理 考点自测 2 3 4 1 5 4 2017天津 理10 已知一个正方体的所有顶点在一个球面上 若这个正方体的表面积为18 则这个球的体积为 答案 解析 9 知识梳理 考点自测 2 3 4 1 5 5 2017宁夏石嘴山第三中学模拟 理15 三棱锥s abc的所有顶点都在球o的表面上 sa 平面abc ab ac 又sa ab ac 1 则球o的表面积为 答案 解析 10 考点1 考点2 考点3 例1 1 下图是由圆柱与圆锥组合而成的几何体的三视图 则该几何体的表面积为 a 20 b 24 c 28 d 32 答案 解析 11 考点1 考点2 考点3 2 2017广东 江西 福建十校联考 文7 某几何体的三视图如图所示 则它的表面积为 答案 解析 12 考点1 考点2 考点3 思考求几何体的表面积的关键是什么 解题心得1 求几何体的表面积 关键在于根据三视图还原几何体 要掌握常见几何体的三视图 并且要弄明白几何体的尺寸跟三视图尺寸的关系 有时候还可以利用外部补形法 将几何体补成长方体或者正方体等常见几何体 2 求不规则几何体的表面积时 通常将所给几何体分割成基本的柱 锥 台体 先求这些柱 锥 台体的表面积 再通过求和或作差求得几何体的表面积 13 考点1 考点2 考点3 对点训练1 1 2017江西宜春中学3月模拟 某三棱锥的三视图如图所示 该三棱锥的表面积是 答案 解析 2 如图 某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径 若该几何体的体积是 则它的表面积是 a 17 b 18 c 20 d 28 14 考点1 考点2 考点3 答案 解析 15 考点1 考点2 考点3 考向1根据几何体的三视图计算体积例2 1 已知等腰直角三角形的直角边的长为2 将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为 答案 解析 2 某几何体的三视图如图所示 图中四边形都是边长为2的正方形 两条虚线相互垂直 则该几何体的体积是 思考由三视图求解几何体体积的一般思路是什么 16 考点1 考点2 考点3 答案 解析 17 考点1 考点2 考点3 考向2求空间几何体的体积例3 1 2017江苏无锡一模 6 已知正四棱锥的底面边长是2 侧棱长是 则该正四棱锥的体积为 2 如图所示 bd是边长为3的正方形abcd的对角线 将 bcd绕直线ab旋转一周后形成的几何体的体积等于 思考求解几何体体积的一般思路是什么 答案 解析 18 考点1 考点2 考点3 解题心得1 以三视图为载体考查几何体的体积 解题的一般思路是根据三视图想象原几何体的形状构成 并从三视图中发现几何体中各元素间的位置关系及数量关系 然后在直观图中求解 2 求旋转体体积的一般思路是理解所得旋转体的几何特征 确定得到计算体积所需要的几何量 3 计算柱 锥 台的体积的关键是根据条件找出相应的底面积和高 4 注意求体积的一些特殊方法 分割法 补体法 转化法等 它们是解决一些不规则几何体体积计算常用的方法 应熟练掌握 19 考点1 考点2 考点3 对点训练2 1 某几何体的三视图如图所示 则该几何体的体积为 20 考点1 考点2 考点3 2 某几何体的三视图如图所示 单位 cm 则该几何体的体积是 21 考点1 考点2 考点3 3 如图 在多面体abcdef中 已知abcd是边长为1的正方形 且 ade bcf均为正三角形 ef ab ef 2 则该多面体的体积为 22 考点1 考点2 考点3 答案 1 d 2 c 3 a 23 考点1 考点2 考点3 24 考点1 考点2 考点3 例4 1 2017河北保定二模 理8 已知一个球的表面上有a b c三点 且ab ac bc 2 若球心到平面abc的距离为1 则该球的表面积为 a 20 b 15 c 10 d 2 2 已知直三棱柱abc a1b1c1的6个顶点都在球o的球面上 若ab 3 ac 4 ab ac aa1 12 则球o的半径为 25 考点1 考点2 考点3 3 四棱锥p abcd的五个顶点都在一个球面上 该四棱锥的三视图如图所示 e f分别是棱ab cd的中点 直线ef被球面所截得的线段长为2 则该球的表面积为 26 考点1 考点2 考点3 答案 1 a 2 c 3 d 解析 1 由题意可得平面abc截球面所得的截面圆恰为正三角形abc的外接圆o 设球o的半径为r 球心到平面abc的距离为1 由勾股定理可得r2 12 r2 解得r2 5 球o的表面积s 4 r2 20 故选a 27 考点1 考点2 考点3 28 考点1 考点2 考点3 29 考点1 考点2 考点3 思考如何求解球的表面积 体积及与球有关的切 接问题中的表面积 体积问题 解题心得1 求解球的表面积 体积问题的关键是求出球的半径 一般方法是依据条件建立关于半径的等式 2 多面体的外接球和内切球问题 其解题关键在于确定球心在多面体中的位置 找到球的半径或直径与多面体相关元素之间的关系 结合原有多面体的特性求出球的半径 然后利用球的表面积和体积公式进行正确计算 常见的方法是将多面体还原到正方体或长方体中再去求解 3 球的截面问题 首先需理解两个基本性质 球的任何一个截面都是圆面 球心和截面圆的圆心的连线垂直于截面 然后利用性质解三角形求出球的半径 30 考点1 考点2 考点3 对点训练3 1 2017河北张家口4月模拟 理10 已知三棱柱abc a1b1c1的六个顶点都在球o的球面上 且侧棱aa1 平面abc 若ab ac 3 bac aa1 8 则球的表面积为 2 2017福建厦门一中考前模拟 理9 在底面为正方形的四棱锥s abcd中 sa sb sc sd 异面直线ad与sc所成的角为60 ab 2 则四棱锥s abcd的外接球的表面积为 a 6 b 8 c 12 d 16 答案 1 c 2 b 31 考点1 考点2 考点3 32 考点1 考点2 考点3 2 取底面中心o bc中点e 连接so se oe so oe ad bc scb为异面直线ad sc所成的角 即 scb 60 sb sc sbc是等边三角形 33 考点1 考点2 考点3 1 求柱体 锥体 台体与球的表面积 体积的问题 要结合它们的结构特点与平面几何知识来解决 2 求三棱锥的体积时要注意三棱锥的每个面都可以作为底面 3 与球有关的组合体问题 一种是内切 一种是外接 解题时要认真分析图形 明确切点和接点的位置 确定有关元素间的数量关系 并作出合适的截面图 1 求组合体的表面积时 组合体的衔接部分的面积问题易出错 2 由三视图计算几何体的表面积与体积时 由于几何体的还原不准确及几何体的结构特征认识不准易导致错误 3 易混侧面积与表面积的概念 34 一 数学文化与立体几何典例1 算数书 竹简于上世纪八十年代在湖北省江陵县张家山出土 这是我国现存最早的有系统的数学典籍 其中记载有求 囷盖 的术 置如其周 令相乘也 又以高乘之 三十六成一 该术相当于给出了由圆锥的底面周长l与高h 计算其体积v的近似公式v l2h 它实际上是将圆锥体积公式中的圆周率 近似取为3 那么 近似公式v l2h相当于将圆锥体积公式中的 近似取为 答案 b 35 典例2 九章算术 是我国古代内容极为丰富的数学名著 书中有如下问题 今有委米依垣内角 下周八尺 高五尺 问 积及为米几何 其意思为 在屋内墙角处堆放米 如图 米堆为一个圆锥的四分之一 米堆底部的弧长为8尺 米堆的高为5尺 问米堆的体积和堆放的米各为多少 已知1斛米的体积约为1 62立方尺 圆周率约为3 估算出堆放的米约有 a 14斛b 22斛c 36斛d 66斛答案 b 36 37 答案 d 38 39 典例4我国南北朝时期伟大的数学家祖暅提出了著名的祖暅原理 幂势既同 则积不容异 幂 是截面积 势 是几何体的高 意思是两等高立方体 若在每一等高处的截面积都相等 则两立方体体积相等 已知某不规则几何体与如图所示的三视图所对应的几何体满足 幂势同 则该不规则几何体的体积为 40 解析 由三视图知 该几何体是从一个正方体中挖去一个半圆柱 v正方体 23 8 v半圆柱 12 2 所以三视图对应几何体的体积v 8 根据祖暅原理 不规则几何体的体积v v 8 答案 c 41 典例5 2017河南新乡三模 九章算术 是我国古代内容极为丰富的数学名著 书中有如下问题 今有刍甍 下广三丈 袤四丈 上袤二丈 无广 高一丈 问 积几何 其意思为 今有底面为矩形的屋脊状的楔体 下底面宽3丈 长4丈 上棱长2丈 高一丈 问它的体积是多少 已知1丈为10尺 现将该楔体的三视图给出如下图所示 其中网格纸上小正方形的边长为1丈 则该楔体的体积为 a 5000立方尺b 5500立方尺c 6000立方尺d 6500立方尺 42 答案 a 43 反思提升几个例题很好地诠释了 考纲 中对数学文化内容的要求 加强对中国优秀传统文化的考查 引导考生提高人文素养 传承民族精神 树立民族自信心和自豪感 试题的价值远远超出试题本身 以中国古代数学典籍 九章算术 祖暅原理为背景 考查几何体的体积 三视图及体积计算 不仅检测了考生的基础知识和基本技能 又展示了中华民族的优秀传统文化 44 二 高频小考点 简单几何体的内切球与外接球问题简单多面体外接球问题是立体几何中的难点和重要的考点 此类问题实质是解决球的半径长或确定球心o的位置问题 其中球心的确定是关键 1 外接球的问题 1 必备知识 简单多面体外接球的球心的结论 结论1 正方体或长方体的外接球的球心是其体对角线的中点 结论2 正棱柱的外接球的球心是上下底面中心的连线的中点 结论3 直三棱柱的外接球的球心是上下底面三角形外心的连线的中点 45 结论4 正棱锥的外接球的球心在其高上 具体位置可通过计算找到 构造正方体或长方体确定球心 利用球心o与截面圆圆心o1的连线垂直于截面圆及球心o与弦中点的连线垂直于弦的性质 确定球心 2 方法技巧 几何体补成正方体或长方体 2 内切球问题 1 必备知识 内切球球心到多面体各面的距离均相等 外接球球心到多面体各顶点的距离均相等 正多面体的内切球和外接球的球心重合 正棱锥的内切球和外接球球心都在高线上 但不一定重合 2 方法技巧 体积分割是求内切球半径的通用做法 46 3 典例剖析典例1 2015全国 理9 已知a b是球o的球面上两点 aob 90 c为该球面上的动点 若三棱锥o abc体积的最大值为36 则球o的表面积为 a 36 b 64 c 144 d 256 答案 c解析 由 aob面积确定 若三棱锥o abc的底面oab上的高最大 则其体积才最大 因为高最大为半径r 所以vo abc 解得r 6 故s球 4 r2 144 47 典例2体积为8的正方体的顶点都在同一球面上 则该球的表面积为 答案 a解析 设正方体的棱长为a 由a3 8 得a 2 由题意可知 正方体的体对角线为球的直径 48 典例3 2016全国 理10 在封闭的直三棱柱abc a1b1c1内有一个体积为v的球 若ab bc ab 6 bc 8 aa1 3 则v的最大值是 答案 b 49 典例4长方体的长 宽 高分别为3 2 1 其顶点都在球o的球面上 则球o的表面积为 答案 14 解析 由题意可知长方体的体对角线长等于其外接球

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论