摘要目录.doc

开元煤矿1.8Mta新井设计含5张CAD图.zip

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:41845127    类型:共享资源    大小:4.51MB    格式:ZIP    上传时间:2020-01-17 上传人:QQ14****9609 IP属地:陕西
50
积分
关 键 词:
开元 煤矿 1.8 Mta 设计 CAD
资源描述:
开元煤矿1.8Mta新井设计含5张CAD图.zip,开元,煤矿,1.8,Mta,设计,CAD
内容简介:
区段煤柱的理论计算方法摘要:煤炭是我国主要能源,随着煤炭的连续开采,浅、表部煤炭资源越来越少,目前己转向深部煤层的开采。为了提高综放开采煤炭的回收率,如何缩短区段煤柱的宽度,已成为现在的一个热点问题。本文通过分析煤柱的力学状态和破坏机理,结合前人的经验公式,得到了煤柱计算的理论方法,为综放工作面合理留设煤柱尺寸及其支护设计提供了理论依据。关键词:区段煤柱;计算方法;弹塑性区宽度;SMP准则1前言煤炭是现代世界五大能源(煤炭、石油、天然气、水电、核能)之一,在我国经济和源结构中,都占据着非常重要的地位。长期以来,煤炭在我国能源一次性消耗占70%以上在今后相当长的时期内,以煤炭为主的能源状况不会改变。但近年来,大倾角中厚煤层区段煤柱留设宽度问题日益突出,虽前人针对此问题提出了一些解决方法,但从推广应角度出发仍存在一定的缺陷,因此,如何从实用角度出发确定其合理留设宽度已成为大倾角中厚煤层开采亟待解决的问题之一。在当前矿井回采巷道布置中,一般采用沿空巷道或双巷掘进的布置方式。相比较而言,沿空留巷技术能够较好地实现无煤柱护巷,无论是在回收煤炭资源还是在巷道开挖工程量上,都比留煤柱护巷具有更好的技术经济优势。因而,我国很多矿区为了少掘巷道、增加煤炭资源回收率、改善生产的连续性即采掘接续紧张问题,在条件允许的前提下均寻求沿空留巷技术。然而,受采高、倾角及特殊顶底板等开采条件的限制,沿空留巷也遇到了一些技术难题,如:(1)在特殊顶底板条件下,巷旁煤体对沿空留巷顶板稳定的作用方面研究还不够;(2)不论是传统的木垛巷旁支护还是最新的高水平材料巷旁充填支护,它们都属于被动支护,但随着采高的增大,巷旁支护的初始阻力难以保证;(3)由于巷内与巷旁支护方式选型和参数的选择上不够合理,造成巷内与巷旁支护不能共同维护沿空留巷的稳定。因此,在沿空留巷不能保证煤矿正常安全生产时,双巷掘进(留设区段煤柱)仍是一种很好的后续回采巷道布置方式。在我国,留设煤柱一直是煤矿传统的护巷方法,区段平巷双巷掘进和使用,其技术管理简单,对通风、运输、排水、安全都有利,尤其在煤层倾角较大的条件下,这种方式更为普遍,但煤炭资源损失量大、巷道掘进工程量大的缺点也暴露无疑,此时合理的煤柱留设宽度成为相应的一个研究热点。对此,国内外专家学者提出了许多不同的方法和理论,总结起来主要集中在四个方面:一是通过现场布点实测,测定采动作用下煤体内的应力分布状态,以此来确定回采巷道布置与煤柱宽度;二是应用弹塑性理论,推导出区段煤柱保持稳定状态时的宽度计算公式,以此来确定煤柱的宽度;三是利用计算机软件进行数值模拟,以此来分析确定煤柱的合理尺寸;四是采用传统的现场生产经验,以此来确定煤柱留设宽度(一般普遍采用2025m宽的煤柱)。这些方法和理论虽然对推动大倾角煤层煤柱合理留设宽度研究具有积极的作用,并在一定程度上得到了现场应用,但也仍存在一些缺陷和不足:(1)依托现场设点观测来分析确定煤柱的宽度,此方法虽然适用,但并没有考虑到区域地质条件的差异性和多变性,对于同一煤层而言,即使是同一区域的不同工作面,甚至同一工作面的不同地段,其地质条件也会存在较大差异,因此在该条件下,设点观测分析也仅能起到评价所观测区域煤柱留设是否合理,而对整个区域的煤柱留设只能起到借鉴作用。况且该方法需要耗费大量的人力、物力和时间。(2)对于理论研究而言,其所考虑的影响因素越多,与实际接近的程度就越近,越符合实际,但其所获得的理论计算公式也相应越复杂,参数求取越困难,对现场工程技术人员的知识水平要求就越高,因此在煤矿生产实际当中并未获得广泛应用;(3)对于计算机数值模拟而言,该方法目前仍属一种趋势规律研究,与现场实际情况仍存在一定距离,也仅能对煤柱留设宽度确定分析起指导作用,同样受现场工程技术人员知识水平所限,也并未得到广泛应用;(4)依托生产经验来确定煤柱的留设宽度,虽然方法简单,安全有时也能获得保证,但从资源回收上是否经济则无法保证,难免会造成不必要的资源浪费。综合以上,各种方法虽然对研究大倾角条件下煤柱宽度的确定具有很好的借鉴意义并在一定程度上得到了现场的应用,但该应用仅限于局部,从总体来看,并没有得到真正意义上的广泛推广和应用,究其原因则即有方法自身的原因,更主要的还是由于方法过于复杂而导致在工程技术人员自身知识水平和能力有限的条件下难于掌握。因此,从实用和便于掌握的角度出发,寻求一种能够容易被现场工作人员接受且实用的区段煤柱宽度确定方法就显得十分必要。本文提出的目的和意义在于:(1),在保障安全的前提下,从最大限度地提高煤炭资源回采率出发,确定煤层区段煤柱合理宽度的方法,以此为该类条件下煤柱合理宽度的确定提供理论支持与参考;(2)从实用和便于现场工程技术人员掌握的角度,确定出该条件下煤柱合理宽度的计算公式,以利于现场推广应用。2国内外研究概况、水平和发展趋势长期以来,国内外学者对区段煤柱留设问题的研究主要集中在以下三个方面,即基础理论研究、计算机数值模拟和现场实测研究。其中,基础理论研究主要是以某种理论为先导,依托理论分析并给出相应解决问题的计算公式,从而形成确定区段煤柱合理留设宽度的理论体系;计算机数值模拟是通过计算机模拟软件对煤柱内的应力分布及介质变形破坏规律进行数值模拟计算,以此分析和确定煤柱合理宽度;现场实测研究是通过现场布点了解区段煤柱的破坏情况以及煤体内的应力分布状况,从而确定合理的区段煤柱宽度。在基础理论研究方面,由于欧美等国家对矿山压力研究较早,故欧美专家学者对区段煤柱合理留设理论提出较多,我国学者则多在国外学者提出的理论基础上,结合我国实际生产情况进行了相应的完善。有效区域理论。有效区域理论以罗兰(Rowland,1969)、理查德(Richards,1975)和斯格兰格埃特等为代表,假定各煤柱支撑着它上部及与所邻近煤柱平分的采空区上部覆岩的重量,以此来分析煤柱的破坏以及确定相应的煤柱稳定宽度。这一理论简单易行,在主要开拓和生产煤柱设计方面得到广泛应用。但从其适用性上来看,该理论只能在开掘面积较大、煤柱尺寸、间隔相同、分布均匀的情况下使用。 压力拱理论。此理论认为,由于采空区上方形成压力拱,上覆岩层的载荷只有一小部分用在直接顶上,其它部分的上覆岩层载荷会向两侧的煤柱转移。压力拱的内宽主要受上覆岩层的厚度及采深的影响,压力拱的外宽主要受覆岩内部组合结构的影响。如果采宽大于压力拱的内宽时,则载荷会变得较为复杂,此时压力拱不稳定。即使采宽小于压力拱的内宽,其稳定性也随时间的变化而变化。所以该理论给出了煤柱尺寸的估算方法,认为载荷的分布是复杂的而且有时间性。A.H.威尔逊(Wilson,1972)理论。A.H.威尔逊理论是建立在煤柱三向强度特性的基础上,依据煤体的三向强度特性来分析确定煤柱的稳定性及相应的宽度。该理论克服了其它方法的缺陷,相比较而言更加有用和可靠,因此得到了较广泛的应用。然而,该理论同样有不足之处,例如tg、rp的经验算法与取值等问题,这些问题在一定程度上限制了它在英国以外地区的应用。核区强度不等理论。格罗布拉尔把煤柱核区强度和实际应力联系在一起,从而确定核区内不同位置的强度。该法比较重视煤柱的尺寸和形状,并且认为煤柱核区强度各处不等,煤柱核区平均应力水平即使高于极限值,由于破裂颗粒之间的内摩擦,也不会导致煤柱的彻底破坏,但可能导致煤柱核区和顶、底板连结性能降低,可能引起煤柱的突出或顶、底板在煤柱边缘附近出现不允许的移动。核区强度不等理论虽然有较严密的理论推导,是理论方面的精确计算方法,但它是以理想假设为基础,没有考虑到地质采矿条件的非均匀性,且由于给出的理论计算公式过于复杂、繁琐,参数求取不易,从而限制了它的普遍使用。极限平衡理论。K.A.阿尔拉麦夫(1967)和E.C.科诺年科(1954)利用弹性力学中的三维立体模型分析方法,研究了在煤柱与顶板、底板的接触面上有整体内聚力条件下的任意三边尺寸比值的煤柱应力状态,并得到规则煤柱的顶面所受垂直应力的分布形态。平台载荷法理论。A.H.威尔逊理论公式、核区强度不等理论公式等都是以“煤柱可分为屈服区和核区两部分,核区受屈服区约束”为根据,均有各自的合理成分和应用条件,但都存在一个共同的缺陷,即没有考虑到煤柱与顶、底板接触界面的内聚力C和内摩擦角的影响,或考虑了但始终没有对其明确定义,因此吴立新、王金庄等人在以上公式基础上提出了“平台载荷法”原则,并依据此原则推导了煤柱宽度的计算公式。除以上理论外,还存在一些依托实际工程背景而提出的一些区段煤柱宽度理论计算公式,以及一些隐含在实际工程问题中的区段煤柱宽度计算公式和方法。旺格维利采煤法是澳大利亚针对新南威尔士南部海湾的旺格维利煤层而开发的一种采用连续采煤机组实施断臂开采的采煤方法。神东煤炭分公司部分矿井在采用旺格维利采煤法回采过程中,为取得煤柱与顶板的作用关系,进行了大量理论和现场工作,在结合理论计算基础上,对合理煤柱尺寸进行了数值模拟研究和现场监测,从而得出了合理的煤柱尺寸。为了研究覆岩运动规律,针对地层结构力学性质的差异和其对覆岩运动所起的不同作用,我国学者提出了“岩层控制中的关键层理论”。此理论对岩层控制的实质有了更深入的了解,通过设计合理的煤柱宽度,使上覆岩层中的关键层在留设煤柱支撑下不发生破断而保持稳定,从而起到支撑其上覆直至地表的岩层,控制地表的沉陷,保护地面设施。除以上所述,陈金国对大量实测结果的数理统计、归纳推理的同时,得出不稳定围岩条件下护巷煤柱尺寸的经验计算方法;胡炳南从煤柱强度分析出发,导出任意方向弱面剪力强度安全系数计算式;崔希民等应用从属面积法分析原理,得出倾斜煤层条带煤柱应力表达式认为剪应力对煤柱强度和稳定性有影响;郭文兵等分析了影响走向条带煤柱稳定性的主要因素通过光弹实验得出了条带煤柱、采场应力分布随煤层倾角变化而变化的规律、采用模糊数学理论分析了条带煤柱的稳定性;彭文庆等利用设计好的应力采集仪,通过相似模拟实验得出煤柱上支承压力变化;张开智等从研究钻孔煤粉量变化规律与支承压力分布规律的关系入手,找出二者之间的关系,从而通过现场实测煤粉量的变化来确定煤柱上的支承压力分布峰值与范围。3区段煤柱的力学状态及位置确定3.1沿空掘巷的最佳位置近年来,众多学者及技术人员对沿空掘巷时煤柱宽度的确定及其矿压显现规律进行了研究和探讨,提出了综放面沿空巷道的窄煤柱力学模型和宽煤柱力学模型。通常,在侧向存在采空区的情况下,煤体内存在侧向支撑压力,根据支撑压力分布,巷道可能布置的位置有3种(见图1)。由煤体上方支承压力分布规律可以看出,在位置2掘进巷道,正处于支承压力高峰区巷道不易维护;在位置3掘进巷道,巷道比较容易维护,煤柱损失比较大;在位置1掘进巷道,可提高煤炭回采率,但位置确定较难,巷道变形量大。通常将在位置3布置回采巷道而留设的煤柱称之为宽煤柱,将在位置1布置回采巷道而留设的煤柱称之为窄煤柱。如何保证巷道避开支撑压力峰值区,是合理保留煤柱宽度研究的核心。3.2沿空煤体边缘应力分布 通过现场实测、理论及试验研究表明,采空区边缘煤体的应力分布和变形与破坏状态具有一定规律。煤体边缘的力学状态可以分为以下几个区: (I)卸载松散区:位于煤体边缘,煤体连续性遭到很大程度的破坏,裂隙及其发育呈碎裂状,变形加剧,承载能力下降,在全压力应变过程中处于峰后末端;在此区的巷道受到一定程度的变形压力的影响。 (lI)塑性强化区:位于卸载区和支撑压力峰值位置之间,煤体己经进入塑性变形和破坏阶段,在相当较高的围压作用下仍保持其连续性,且有一定的承载能力在此范围内的巷道受较大的支撑压力和煤体变形压力的影响。 (III)弹性变形区:位于煤体边缘支撑压力峰值区过度到原始应力区,煤体有较高的应力,煤体保持弹性变形状态;此范围煤体有较高的承载能力;此区内的巷道变形量较小。(IV)原始应力区:距煤体边缘较远,煤体的应力和变形基本不受采空区的影响。3.3沿空煤体力学状态分析具体的采矿与地质条件下,有些因素影响采空区边缘煤体应力分布和力学特征。通过现场的观测统计分析,得出主要影响因素包括:煤体硬度、直接顶岩性、煤层倾角、煤层采高及开采深度。其中(1) 卸载带宽度(Ls)式中,f煤体普氏系数;Rc直接顶单轴抗压强度,MPa;煤层倾角,;H采深,m;M采高,m。式 (3.1)表明,煤体边缘卸载区宽度Ls随煤体硬度、直接顶单轴抗压强度和煤层倾角的增加而减小,随采高和采深的增加而增大。(2)塑性带宽度(Lp)(3)影响带宽度(Le) 式中符号意义同式 (3.1)式。从式(3.2)和式(3.3)同样可以看出,煤体边缘塑性带宽度Lp、影响带宽度Le也是随煤体硬度、直接顶单轴抗压强度和煤层倾角而减小,随采高和采深的增加而增大。对于煤体边缘应力分布的实验研究,相似材料模拟试验验证了采深、采高、倾角和直接顶等力学参数对沿倾斜支承压力的影响,并得出最大应力集中系数k的关系式式中,H采深,m;M采高,m;L采空区沿倾斜宽度,m;Re直接顶与煤层的弹模比;煤层倾角,。图2倾斜煤层边缘力学状态分区采用立体相似模拟试验,得出的煤体边缘支承压力近似关系为式中,P支承压力值,t/m2;x距煤体边缘距离,m。从式 (3.5)可知支承压力峰值距煤体边缘35m,峰值压力集中系数约为1.5,支承压力影响范围为25m左右。理论研究方面,借助弹性力学建立煤体边缘的力学平衡方程,经过必要的简化和假设,以及利用某种强度准则(例如莫尔一库仑强度准则)确定塑性区宽度,并获得煤体边缘弹性应力区、塑性应力区应力分布的解析解表达式。比较有代表性的工作是运用极限平衡理论研究煤体边缘应力状态。计算公式主要有三种形式式中,y应力极限平衡区的垂直应力,MPa; x煤体单轴抗压强度,MPa; N0巷道边缘处的垂直应力,MPa; M煤层开采厚度,m; c煤层与顶底板间的粘聚力,MPa; 煤层与顶底板间内摩擦角,; 测压系数,=dx/dy x应力极限平衡区的水平应力,MPa; x煤体内任意点到煤体边缘的距离,m; 常数,=(1+sin)/(1-sin); Pi支架对煤帮的支护阻力,MPa; r煤层平均容重,MN/m3; H巷道埋深,m; k应力集中系数; xp极限平衡区宽度,m; 上述研究普遍存在以下问题:(1)认为极限平衡区内的应力x、y等于主应力1、2忽略了剪应力xy的影响;(2)极限平衡区内的应力(x、y、xy)不满足平衡方程。 为此,通过修正,推导出基于极限平衡理论的煤体边缘塑性区内应力y、塑性区宽度xp,的关系式图3煤层边缘极限平衡区煤体受力分析简图(3.9) (3.10)式中,m煤柱高度,m; c煤层与顶底板间的粘聚力,MPa 煤层与顶底板间内摩擦角,; 煤柱塑性区与弹性区界面处的测压系数; px煤柱侧向约束力,MPa;y,max煤体支承压力峰值,MPa;y,max=kH。从式(3.9)和式(3.10)可知,煤体边缘应力分布和塑性区宽度与采深H、煤柱高度m、煤体强度c,、煤壁侧向支护阻力px有关。在其它条件相同时:(l)煤柱高度m越大,煤体边缘塑性区宽度越大;(2)煤体与顶底板间的粘聚力c和摩擦角越小,煤体边缘塑性区宽度越大;(3)测压系数越大,煤体边缘塑性区宽度越大;(4)煤体极限抗压强度y,max越大,煤体边缘塑性区越小;(5)对煤壁的水平支护阻力px越大,煤体边缘塑性区越小。综放开采所引起的采场周围应力重新分布情况与其他开采方法不全相同,同时考虑倾斜一侧的煤体的倾角因素,重新建立模型,假设如下: (1)煤体视为均质连续体; (2)取整个处于极限强度范围内煤体作为研究对象,研究在平面应变情况下进行; (3)煤体受剪切而发生破坏,破坏满足莫尔一库仑准则;(4) 在煤柱极限强度处,即x=x1,处,应力边界条件为 式中,为极限强度所在面的侧压系数,=/(1-),为泊松比;为煤层倾角();为x方向应力(MPa);为y方向应力(MPa);为煤体的极限强度(即支承压力峰值)。建立如图4所示的力学模型和坐标系统,图中P为巷道支护对煤壁沿x方向的约束力(MPa),xy为煤层与顶底板界面处的剪切应力(MPa),m为开采煤层厚度(m);x1为采空侧至煤体极限强度发生处的距离(m)。由图4可知,求解屈服区界面应力的平衡方程为 上述理论研究视煤层作为水平煤层、煤体屈服强度按理想弹塑性处理。实际上,煤层倾角以及煤体破坏后的应变软化特性也不同程度地影响煤柱应力分布和塑性区宽度。有研究表明,煤体塑性软化时的强度条件可用下式表示: (3.13)式中,1、3分别为最大主应力、最小主应力; M0煤体软化模量; c煤体单轴抗压强度; 煤体内摩擦角; 1煤体主塑性应变。 图4沿空煤体力学模型 煤体在塑性流动阶段(松弛阶段)的强度条件为: (3.14)式中,c*煤体单轴残余抗压强度。设非弹性区与弹性区交界处的压力为支承压力峰值P,则(1)非弹性区宽度x0 (3.15)(2)塑性区宽度x2 (3.16)(3)松弛区宽度x1 (3.17)式中,煤层容重;煤层倾角;f1煤柱与底板间的摩擦系数;St塑性区煤体应变梯度;Kp系数,Kp=1+sin/1-sin c煤体单轴抗压强度; c*煤体单轴残余抗压强度。 (4)塑性区内竖向煤层的应力y (3.18) 式中,x塑性区内任一点距煤体边缘的距离,其它符号意义同式(3.15)式(3.17)。根据上述理论模型,煤层倾角对煤柱非弹性区宽度的影响表现在:随着煤层倾角的增加,煤柱下侧的非弹性区扩展明显增大,给煤柱的稳定性带来不利影响。当煤层倾角为30左右时,煤柱上下非弹性区宽度的比值大约为1.5左右。传统的理论计算中不考虑煤层倾角,当煤层倾角较大时,其计算结果煤柱上侧非弹性区偏大,而下侧偏小。因此,煤柱的稳定性分析应考虑倾角的因素。当煤柱另一侧为巷道时,巷道掘进后周边煤岩体同样也产生塑性变形。在各向等压条件下,运用极限平衡理论,圆形巷道围岩塑性区半径Rp的计算公式为: (3.19)式中,R0巷道半径; p岩层压力,p =KH; 覆岩平均容重; Pi 支护阻力; c,煤岩粘聚力和内摩擦角。 从(3.19)式可知,煤柱中巷道围岩的塑性区半径取决于巷道半径R0、煤体的强度c、,支护阻力Pi,以及埋藏深度H和支承压力集中系数k。从这个意义上讲,煤柱的稳定性取决于采空区侧煤体边缘塑性区和巷道边缘煤体塑性区的宽度。当煤柱宽度B小于煤柱两侧形成的塑性区宽度之和时,也即煤柱两侧的塑性区在煤柱中相贯通时,煤柱将丧失稳定性,与此同时,煤柱护巷也将遭到严重的破坏。因此,保持护巷煤柱稳定的基本条件是:煤柱两侧产生塑性变形后,在煤柱中央仍存在弹性核区,即部分煤柱仍然处于弹性应力状态。有研究建议:对于一次采全厚的综放工作面护巷煤柱,弹性核区的宽度取两倍的巷道高度即可。故综放工作面护巷煤柱保持稳定状态的宽度B: (3.20)式中,Xp采空区侧煤柱边缘塑性区宽度; Wp巷道围岩塑性区宽度; M巷道高度。 应该指出,关于采空区侧煤体边缘塑性区宽度的传统理论计算中,煤柱高度按巷道高度取值,而对于放顶煤开采是否合适有必要做进一步探讨。本文认为,采空区侧煤柱边缘的塑性区宽度应按煤层开采全厚度(采高+放高)计算较为合理,特别是在煤层倾角较大的条件下,应该考虑煤柱下部塑性区宽度增加的特点。此外,小煤柱回采巷道时,煤柱宽度B可能不满足(3.20)式的要求,势必涉及在窄小煤柱失稳状态下如何保证留巷稳定性问题,这方面需要做深入系统的研究。4区段煤柱宽度的确定在煤矿开采中,煤柱宽度越大对巷道的稳定越有利,但却影响煤炭的产出率,造成资源浪费。如何在保证安全生产的前提下,尽量减小煤柱的宽度,从而提高煤炭产出率,并合理推导出煤柱宽度公式,从而设计出经济合理的煤柱尺寸是煤矿开采遇到的基础问题。回采区段护巷煤柱合理宽度为 (4.1)式中,Le为弹性区宽度; Lp为塑性区宽度; X0为采空区侧塑性区宽度; R0为巷道侧塑性区宽度。 目前,在进行煤柱尺寸设计时,主要存在以下2方面问题。 (1)在计算煤柱塑性区宽度时,大多采用MohrCoulomb 屈服准则,它的主要缺点是不能考虑中主应力的影响,使得计算结果偏于保守。 (2)在煤柱中部留有2m(m为采高) 的范围作为弹性区是前人总结的经验,无法从理论上找到依据。 基于以上分析,结合煤柱实际的受力状态,采用考虑中主应力影响的SMP准则,从理论上计算出回采区段煤柱宽度,为煤柱尺寸的设计提供理论依据。4.1平面应变下的SMP准则 日本名古屋工业大学的Matsuoka和Nakai于1974 年提出的SMP准则,是建立在空间滑动面理论基础上的,它是一种考虑3个主应力或应力张量不变量的破坏准则,适用于无黏性材料。Matsuoka于1990年对其作了修改,在主应力表达式中引入一个黏结应力0,其值为 (4.2)式中,c、 分别为岩土材料的内聚力和内摩擦角。得到扩展SMP准则,其表达式为 (4.3)式中,粘性材料主应力 (4.4)粘性材料不变量形式为 (4.5)式中, (4.6) 平面应变下,基于相关联流动法则可以证明,3个主应力之间的关系为 (4.7) 此时,3个主应力所形成的3个应力Mohr圆的公切线恰好相交于-0点,如图5所示。图5 扩展SMP准则将式(4.7)代入式(4.5)即可得平面应变的SMP表达式为 (4.8)4.2煤柱塑性区宽度计算 由于煤柱沿煤层走向的尺寸远大于沿倾向的尺寸,故可将煤柱宽度计算简化为平面应变问题。4.2.1采空区侧塑性区宽度计算 因煤层厚度和采深比较相对很小,可认为x均匀分布,支承压力z沿煤层厚度不变。假设煤体是均质连续的各向同性体,在煤柱内任取一宽度为dx的单元体,其高度为煤层厚度m,其应力状态如图6所示,在x轴方向所承受的压力靠工作面侧为x,另一侧为 (4.9) 在z轴方向上所受的压力分别为z。由于所取单元作用应力沿x轴方向变化较大,而沿z 轴方向的应力变化较小,因而忽略z轴方向的应力增量。设煤层与顶底板接触面之间的内聚力为c1,内摩擦系数为f1;煤体的内聚力为c,内摩擦系数为f( f = tan )。 图6 极限平衡区受力状态 由煤柱应力分布规律可知,当单元体处于极限平衡时Fx = 0,即 (4.10)整理得 (4.11)由于实际情况下,煤柱一侧采空,使压力释放,使z远大于x,因而z同1间夹角很小,可认为x为小主应力,z为大主应力。设塑性区内煤体遵循SMP屈服准则,由式(4.5)、(4.7)(4.8)可以得到 (4.12)式中, (4.13)E为常数。当x = 0时,x = Pa,Pa为矸石对煤柱的约束应力。将此条件代入式(4.11)可得 (4.14) 当支承压力达到峰值z = K1H( K1为应力集中系数,一般取值为24) 时,x = X0即为塑性区宽度,代入式(4.12) 得 (4.15)4.2.2巷道侧塑性区计算取圆形巷道半径为r1,塑性区内微体单元受力分析如图7所示,其受力在径向和切向保持平衡,得到静力平衡方程如下: (4.16)式中,rp为径向应力;p为切向应力。图7 塑性区围岩微体单元受力状态 根据受力特征可认为为最大主应力,r为最小主应力,在塑性区内满足SMP屈服准则,代入式(4.7)得 (4.17)由式(4.16)、(4.17)可得 (4.18) 当巷道围岩有支护时,支护与围岩边界( r =r1) 应力为支护应力p,即rp = p,将此条件代入式(4.18)可得 (4.19)设巷道所处的原岩应力场为静水应力场,弹性区与塑性区交界处的半径为R0,界面上的径向应力为R,这时可把整个弹性区看作为一个半径趋于,内半径为R0的厚壁圆筒,在弹性区内,根据弹性力学中厚壁圆筒表达式可得 (4.20)在弹塑性区交界处,满足应力协调条件,即 (4.21)由式(4.19) 、(4.20) 、(4.21) 可得弹塑性区边界上应力为 (4.22)塑性区半径为 (4.23)对于非圆形巷道目前仍不能从理论上解决其塑性区形状及大小问题,对于非圆形巷塑性区大小问题,一般采用将其视半径为外接圆半径的圆形巷道进行计算,求得塑性半径后再乘以修正系数,得到非圆形巷道的塑性区范围,修正系数如表1所示。表1 矩形巷道塑性区宽度修正系数由式(4.23)可得矩形巷道塑性区宽度为 (4.24)煤柱塑性区宽度为 (4.25)式中,r1为巷道外接圆半径。以MohrCoulomb 为屈服准则所得采空区侧和巷道侧塑性区宽度公式分别为 (4.26)式中,为三轴应力系数,=(1+sin)/(1-sin)。4.2.3煤柱塑性区的讨论某矿煤层厚度为6.5 m,埋深350 m,煤体的内摩擦角及内聚力分别为 = 30,c =1. 6 MPa,煤体与顶底板中间的摩擦系数与内聚力分别为0.4、1.6MPa,矸石约束力一般忽略不计,即Pa = 0,巷道支护力p一般取值范围为0. 190.36 MPa,本研究取0.24 MPa,应力集中系数K1 = 4,矩形巷道高3.2 m,宽4.5 m。计算结果如表2所示。表2 煤柱塑性区宽度计算对比煤的强度主要取决于内聚力c 和内摩擦角,当其他条件不变时,煤柱塑性区的宽度将随煤的强度不同而发生改变。本研究分别取2 种情况,对其进行分析。 (1)保持其他条件不变,改变煤的内摩擦角,由生产实践可知煤的内摩擦角取值范围为1640,故在计算中内摩擦角的取值在这一范围内选取。改变内磨擦角时煤柱塑性区宽度变化如图8所示。 (2)保持其他条件不变,改变煤的内聚力,取值范围为19.8 MPa。改变内聚力时煤柱塑性区宽度变化见图9所示。图8 改变内摩擦角煤柱塑性区宽度图9 改变内聚力时煤柱塑性区宽度从图8和图9可以看出,随着煤体的强度增大,煤柱塑性区宽度不断减小,2种方法的变化趋势相同。但考虑中主应力影响后,煤柱的塑性区宽度在各种情况下较以往计算的结果小。4.3煤柱弹性区宽度计算煤柱中部弹性区宽度Le由2部分组成,如图10所示,即Le = L1 + L2,L1、L2分别为靠近采空区、巷道一侧的弹性区临界宽度。根据支承压力分布特点,取在弹性区内其分布特点为 图10中K1、K2分别为靠近采空区、巷道一侧应力集中系数。 联合弹塑性力学中的艾里应力函数以及最大主应力公式,可以得到采空区侧弹塑性区交界处的最大和最小主应力图10 煤柱支承压力分布 (4.27)将式(4.27)代入式(4.8)可得 (4.28)式中,为侧压系数。同理可得靠近巷道侧弹性区临界宽度 (4.29)综合上诉分析,可得区段煤柱宽度表达式 (4.30)5结论通过理论分析,得出了一下结论: (1)在综合分析现场实测的基础上,得出了综放面沿空煤体边缘依次为卸载松散区、塑性强化区、弹性变形区、原始应力区,并得出了沿空煤体边缘应力极限平衡区内任意一点的应力和屈服区宽度计算公式。 (2)通过分析沿空煤体的垂直应力和水平应力变化,得出综放开采引起的沿煤层倾斜方向的垂直和水平应力峰值作用位置不藕合。 (3)煤层倾角对支承压力峰值有一定的影响,倾角越大,上、下侧煤柱支承压力峰值位置差异就越大,同时对沿空煤体屈服区宽度产生上下侧差异。 (4)在综合考虑煤柱宽度留设原则和不同因素对煤柱稳定性影响的基础上,得出区段煤柱宽度和合理确定方法。 (5)考虑主应力的影响,用SMP屈服准则代替MohrCoulomb屈服准则。 (6)基于SMP屈服准则,推导出回采区段煤柱宽度理论公式,公式中的符号具有明确的物理意义,为煤柱尺寸设计提供理论依据。 (7)根据煤体的材料特征,采用适用于黏性材料的SMP屈服准则,解决MohrCoulomb 准则存在的不足。 (8)基于SMP屈服准则计算出煤柱塑性区宽度,得出以MohrCoulomb准则计算所得的塑性区宽度偏于保守,说明在保证护巷煤柱稳定的前提下,可进一步减小煤柱宽度。参考文献1王晓鸣,赵建泽采煤概论M北京:煤炭工业出版社,20051-82费旭敏我国沿空留巷支护技术现状及存在的问题探讨J中国科技信息,2008(7):48-513钱鸣高,石平五矿山压力与岩层控制M徐州:中国矿业大学出版社,200322-28,218-2214陈金国不稳定围岩区段煤柱尺寸的确定J矿山压力与顶板管理,2000(4):39-415李洪,耿献文,朱学军区段煤柱宽度的实测确定J矿山压力与顶板管理,2005(1):31-356赵国旭,谢和平,马伟民宽厚煤柱的稳定性研究J辽宁工程技术大学学报,2004,23(1):38-407郭明友,潘春德综放锚网沿空巷道合理小煤柱尺寸的确定J矿山压力与顶板管理,2001(4): 48-498徐永圻.采矿学M徐州:中国矿业大学出版社,20039MATSUOKA H,NAKAI T.Stress-deformation and strength characteristics of soil under three difference principal stressesJProc of Japan Society of Civil Engineers,1974,232:59-70.10罗汀,姚仰平,松岗元.基于SMP准则的土的平面应变强度J岩土力学,2000,21(4):390-39311朱建明,彭新坡,姚仰平,等SMP准则在计算煤柱极限强度中的应用J岩土力学,2010,31(9):2987-299012赵少飞,栾茂田,许成顺,等.考虑中主应力及三向应力状态影响的地基承载力分析J大连理工大学学报,2006,46(3):385-38913高玮.倾斜煤柱稳定性的弹塑性分析J力学与实践,2001(23):23-2614沈明荣,陈建峰.岩体力学M上海:同济大学出版社,200615杨桂通.弹性力学M北京:高等教育出版社,199816 于海勇综采开采的基础理论 北京:煤炭工业出版社,199517 王省身矿井灾害防治理论与技术徐州:中国矿业大学出版社,198918 刘刚井巷工程徐州:中国矿业大学出版社,200519 钱鸣高、石平五矿山压力及岩层控制徐州:中国矿业大学出版社,200320 岑传鸿、窦林名采场顶板控制与监测技术 徐州:中国矿业大学出版社,200421 刘泽功.通风安全工程计算机模拟与预测仁M.北京:煤炭工业出版社,199622 邓军,徐精彩,王春跃.综放工作面巷道沿空侧松散煤体漏风强度测算方法研究J.煤炭学报,1999,24(5)23 马明,蔡国玉.大倾角综采工作面矿压显现规律J.矿山压力与顶板管理.1997,(3)24 张义顺,勾攀峰等.大倾角煤层走向长壁开采顶板岩层活动规律及其矿压控制J.焦作矿业学院学报.1995,14(3)25 钱鸣高.矿山压力及其控制M.北京:煤炭工业出版社,199126 国家煤矿安全监察局.煤矿安全规程K.北京:煤炭工业出版社,2001(5)27 T.P.Medhurst,E.T.Brown.A study of the mechanical behavior of coal for Pillar Design J:Int .J. RockMech. Min.SCi,1998,35(8)28 Song Guo,J.Stanus,Control mechanism of a tensioned bolt system in theLaminated roof with a large horizontal stress,16th hit.Conf.on Ground Control in Mining,Morgantown,West Virglula,199729 R.G.Siddall,W.J.Gale,Strata Control一A New Science for an old Problem.The Anual Joint Meeting of the Institution of Mining Engineers and the Institution of Mining and metallurgy at The Majestic Hotel.Harrogate on 30/9/230 Matthews S M,etal .Horizontal stress control in underground coal mines.1lth International Conference on Ground Control in Mining,The University of Wbllongong,N.S.W.,July 1992Effective Correlation of Apparent Gas Permeability in Tight Porous MediaFaruk CivanAbstract:Gaseous flow regimes through tight porous media are described by rigorous application of a unified HagenPoiseuille-type equation. Proper implementation is accom-plished based on the realization of the preferential flow paths in porous media as a bundle of tortuous capillary tubes. Improved formulations and methodology presented here are shown to provide accurate and meaningful correlations of data considering the effect of the charac-teristic parameters of porous media including intrinsic permeability, porosity, and tortuosity on the apparent gas permeability, rarefaction coefficient, and Klinkenberg gas slippage factor.Keywords:Tight porous media Apparent gas permeability Rarefaction coefficient Klinkenberg gas slippage factor Tortuosity1 IntroductionDescription of various gaseous flow regimes through tight porous media has drawn con-siderable attention because the convetional Darcys law cannot realistically describe the variety of the relevant flow regimes other than the viscous flow regime. For example, Javadpour et al. ( 2007) have determined that gas flow in shales deviates from behavior described by the conventional Ficks and Darcys laws. Therefore, many attempts have been made in describing the transfer of gas through tight porous media under various regimes. Such efforts are of utmost practical importance when dealing with extraction of hydro-carbon gases from unconventional gas reservoirs, such as shale-gas and coal-bed methane reservoirs. Skjetne and Gudmundsson (1995), and Skjetne and Auriault (1999) theoretically investigated the wall-slip gas flow phenomenon in porous media based on the Navier-Stokes equation, but did not offer any correlation for the Klinkenberg effect. Wu et al. (1998)developed analytical procedures for determination of the Klinkenberg coefficient from laboratory and well tests, but did not provide any correlation. Having reviewed the vari-ous correlations available, Sampath and Keighin (1982) proposed an improved correlation for the Klinkenberg coefficient of the N2 gas in the presence of water in porous media, expressed here in the consistent SI units aswhere bk is in Pa, K is in m2, and is in fraction. The significance of this correlation is that its exponent is very close to the 0.50 exponent value obtained by theoretical analysis in this article.Beskok and Karniadakis (1999) developed a unified HagenPoiseuille-type equation covering the fundamental flow regimes in tight porous media, including continuum fluid flow, slip flow, transition flow, and free molecular flow conditions. Ability to describe all four flow regimes in one equation alone is an outstanding accomplishment. However, the empirical correlation of the available data of the dimensionless rarefaction coefficient is a mathe-matically complicated trigonometric function. As demonstrated in this article, much accu-rate correlation of the same data can be accomplished using a simple inverse-power-law function.Florence et al. ( 2007) made an attempt at utilizing the HagenPoiseuille-type equation of Beskok and Karniadakis ( 1999) to derive a general expression for the apparent gas perme-ability of tight porous media and correlated some essential parameters by means of exper-imental data, including the Klinkenberg gas slippage factor and the Knudsen number by ignoring the effect of tortuosity, although it is an important factor especially in tight porous media. Therefore, although their overall methodology is reasonable, their formulation and data analysis procedure require some critical improvements as pointed out in this article when attempting to apply the HagenPoiseuille-type equation, originally derived for pipe flow to tight-porous media flow. Their treatment neglects a number of important issues. The HagenPoiseuille-type equation of Beskok and Karniadakis ( 1999) has been derived for a single-pipe flow. When the bundle of tortuous tubes realization of the preferential flow paths in tight-porous media ( Carman 1956) is considered, the number and tortuosity of the pref-erential flow paths formed in porous media should be taken into account as the important parameters.Further, the approach taken by Florence et al. ( 2007) for correlation of the Klinkenberg gas slippage factor is not correct and consequently their correlation cannot represent the data over the full range of the gas molecular mass (commonly called weight). These errors are corrected in this article by a rigorous approach which leads to a very accurate correlation of their data with a coefficient of regression almost equal to 1.0. In addition, the present analysis lends itself to a practical method by which tortuosity of tight porous media can be determined using the flow data obtained by conventional gas flow tests. To the authors knowledge, such a method does not presently exist in the literature.Hence, the primary objectives of this article are threefold: (1)Correlation of the rarefaction coefficient (2)Derivation of the apparent gas permeability equation (3)Correlation of the Klinkenberg gas slippage factor These issues are resolved and verified in the following sections by theoretical means and rigorously analyzing experimental data.2 Correlation of the Rarefaction CoefficientBeskok and Karniadakis (1999) derived a unified HagenPoiseuille-type equation for volu-metric gas flow qh through a single pipe, given below:where the flow condition function f (K n) is given bywhere Kn is the Knudsen number given by where Rh and Lh denote the hydraulic radius and length of flow tube, and denotes the mean-free-path of molecules given by ( Loeb 1934)where p is the absolute gas pressure in Pa, T is the absolute temperature in K, M is the molecular mass in kg/kmol, Rg = 8314 J/kmol/K is the universal gas constant, and is the viscosity of gas in Pa.s.Equation 2 describes the fundamental flow regimes, namely the conditions of continuum fluid flow (Kn 0.001), slip flow (0.001 Kn 0.1), transition flow (0.1 Kn 10), and free molecular flow (Kn 10), according to the classification of flow regimes by Schaaf and Chambre ( 1961). However, Beskok and Karniadakis (1999) emphasize that the Knudsen number limits given in this classification are based on pipe flow experiments and may vary by the geometry of other cases.The parameter appearing in Eq. 3 is a dimensionless rarefaction coefficient which varies in the range of 0 o over 0 Kn . Beskok and Karniadakis (1999) provide an empirical correlation as:where 1 = 4.0, 2 = 0.4, and o is an asymptotic upper limit value of as Kn (representing free molecular flow condition), calculated by: Here, b denotes a slip coefficient. They indicate that = 0 and b = 1 in the slip flow condition, and therefore Eq. 7 becomes: The expression of Eq. 6 is mathematically complicated. In the following exercise, it is demonstrated that a simple inverse power-law expression as given below provides a much more accurate and practical alternative to Eq. 6 for the range of data analyzed by Beskok and Karniadakis (1999): where A and B are empirical fitting constants. Note that Eq. (9) honors the limiting conditions of 0 o over 0 Kn . In fact, it can be shown thatFig. 1 Present approach using Eq. 9 accurately correlates the data of both Loyalka and Hamoodi (1990)using the theoretically predicted upper limit value of o = 1.358 and Tison and Tilford (1993) using anadjusted upper limit value of o = 1.205. The present approach yields accurate fit of data with coefficients of regressions very close to 1.0As illustrated in Fig. 1, the present approach using Eq. 9 accurately correlates the data of both Loyalka and Hamoodi (1990) using the theoretically predicted upper limit value of o = 1.358 and Tison and Tilford (1993) using an adjusted upper limit value of o = 1.205. Consequently, the data of Loyalka and Hamoodi (1990) is correlated as Thus, A = 0.1780 and B = 0.4348. On the other hand, the data of Tison and Tilford(1993) is correlated as Figure 2 shows that the data of Loyalka and Hamoodi (1990) can be correlated accurately by both the present correlation approach using Eq. 9 with a coefficient of regression of R2 = 0.9871 and the empirical equation given by Beskok and Karniadakis (1999)with a coefficient of regression of R2 = 0.9697 using the theoretically predicted value of o = 1.358. However, as indicated by the comparison of the coefficients of regressions, the present approach yields a more accurate correlation than that of Beskok and Karniadakis(1999).Fig. 2 Data of Loyalka and Hamoodi (1990) can be correlated accurately by both the present correlation approach using Eq. 9 with a coefficient of regression of R2 = 0.9871 and the empirical equation given by Beskok and Karniadakis (1999) with a coefficient of regression of R2 = 0.9697 using the theoretically predicted value of o = 1.358. However, as indicated by the comparison of the coefficients of regressions, thepresent approach yields a more accurate correlation than that of Beskok and Karniadakis (1999) Figure 3 shows that the present correlation with Eq. 9 using the adjusted value of o =1.205 represents the data of Tison and Tilford (1993) accurately with a coefficient of regression of R2 = 0.9486, close to 1.0. In contrast, the empirical equation given by Beskok and Karniadakis (1999) using the adjusted value of o = 1.19 leads to a lower quality correlation with a coefficient of regression of R2 = 0.7925, less than 1.0. As indicated by the comparison of the coefficients of regressions, the present approach yields a much more accurate correlation than that of Beskok andKarniadakis(1999)Fig. 3 Present correlation with Eq. 9 using the adjusted value of o = 1.205 represents the data of Tison and Tilford (1993) accurately with a coefficient of regression of R2 = 0.9486, very close to 1.0. However, the empirical equation given by Beskok and Karniadakis (1999) using the adjusted value of o = 1.19 leads to a lower quality correlation with a coefficient of regression of R2 = 0.7925, less than 1.0. As indicated by the comparison of the coefficients of regressions, the present approach yields a much more accurate correlation than that of Beskok and Karniadakis (1999) It is concluded that the present simple inverse power-law expression yields more accurate correlation of the dimensionless rarefaction coefficient with coefficients of regressions very close to 1.0 in both cases and therefore more suitable than the empirical equation given by Beskok and Karniadakis(1999).3 Derivation of the Apparent Gas Permeability EquationThe Beskok and Karniadakis (1999) unified HagenPoiseuille-type equation (Eq. 2) derived for flow qh through a single pipe can now be applied for the volumetric gas flow through a bundle of tortuous flow paths as:where Lh denotes the length of the tortuous flow paths and n denotes the number of preferential hydraulic flow paths formed in porous media. The latter can be approximated by rounding the value calculated by the following equation to the nearest integer (Civan 2007)where is porosity and Ab is the bulk surface area of porous media normal to flow direction. The symbol q denotes the total volumetric flow through porous media. It can be described macroscopically by a Darcy-type gradient-law of flow, where the flow is assumed proportional to the pressure gradient given by where K denotes the apparent gas permeability of tight porous media and L is the length of bulk porous media. Note that Eq. 16 is used frequently, although it is not rigorously correct. The corrections required on Eq.16, such as the effect of the threshold pressure gradient (Prada and Civan1999), are provided elsewhere by Civan (2008), but are ignored here to avoid unnecessary complications for purposes of the present discussion and derivation. Nevertheless, Civan(2008) argued that such corrections are usually negligible for gaseous flow, although the validity of such claim for tight porous media needs detailed investigation. The tortuosity factor hof hydraulic preferential flow paths in porous media is defined by Hence, the following expression can be derived for the apparent gas permeability by combining Eqs. 1417:where K denotes the liquid permeability of porous media given by Equation 19 can be rearranged to express the hydraulic tube diameter as Alternatively, it can be shown for a pack of porous media grains that (Civan 2007)Where g denotes the specific grain surface in porous media. Hence, equating Eqs. 20 and 21 yields the well-known Kozeny-Carman equation of permeability as (Carman 1956; Civan2007) The function f (Kn) does not appear in Eq. 22 because the intrinsic permeability K of porous media is only a property of porous media and does not depend on the fluid type and flow condition.The formulation presented by Florence et al. (2007) for the apparent gas permeability of tight porous media considered flow through a single straight pipe and therefore needs corrections, according to the procedure described above.4 Correlation of the Klinkenberg Gas Slippage FactorUnder slip flow conditions, = 0 and b = 1, and therefore Eq. 18 combined with Eq. 3 can be written as: Florence et al. (2007) approximate this equation for Kn 1, upon substitution of the Kn number expression Eq. 4 as: whereas the equation of Klinkenberg (1941) is given by:where bk is the slippage factor. Comparing Eqs. 24 and 25 yields an expression asSubstituting Eqs. 5 and 20 into Eq. 26 results in:where the coefficient is defined by Figure 4 indicates that the present Eq. 28 yields an accurate correlation for the data of Florence et al. (2007) involving the flow of various gases (hydrogen, helium, nitrogen, air, and carbon dioxide) in a given porous medium (sandstone) under isothermal conditions (assumed as 298K) as the following:where is in Pa.m, in Pa.s, and M is in kg/kmol. The results reported in Table 1 indicate that the values calculated by Eq. 29 obtained by correlating the coefficient divided by the viscosity versus the square-root of the molecular mass, according to Eq. 28 accurately match the data of Florence et al. (2007). In contrast, the values calculated using the correlation developed by Florence et al. (2007), also given in Table 1, differ significantly from the same data because they correlated the coefficient directly (i.e. without dividing by the gas viscosity) by an inverse-power-law function of the molecular mass, expressed here in the consistent SI units as:where is in Pa.m and M is in kg/kmol. In view of Eq. 28, their approach is not rigorously correct because the effect of viscosity was ignored in their correlation. Note that Eqs. 2628 can be used to derive an expression for the Knudsen number asFor example, applying the correlation given by Eq. 29 to Eq. 31 yields:ThereforeFig. 4 Present approach yields an accurate correlation of the (/), m/s parameter versus the molecular mass (M, kg/kmol) for the data of Florence et al. (2007) for flow of various gases (hydrogen, helium, nitrogen, air, and carbon dioxide) in sandstone under 298Kisothermal conditions. The coefficient of regression is almost equal to 1.0 indicating that the present correlation approach is rigorousTable 1 Comparison of the values indicate that the present correlation approach reproduces the data with high accuracyIn contrast, the values calculated by the correlation developed by Florence et al. (2007) differ from the data significantlywhere bk is in Pa, in Pa.s, M is in kg/kmol, p is in Pa, K is in m2, and is fraction. When applied for the N2 gas, Eq. 33 yields The coefficient 0.0094 of this equation is in the same order ofmagnitude as the coefficient 0.0414of Eq. 1 of Sampath and Keighin (1982) but differs by a factor of 4.4. This may be explained due to the 0.53 value of the exponent of Eq. 1 being different than the exponent value of 0.50 of Eq. 34 and the N2 gas flow tests conducted in the presence of water in porous media instead of the dry porous media considered by Florence et al. (2007). As a bonus, Eq. 29 reveals that the tortuosity h of the preferential hydraulic flow paths in the porous medium is given by, expressed in the consisted SI unitswhere Rg is 8314 J/kmol-K and T is in K. Equation 35 may be used in determining the tortuosity of porous media. For example, the tortuosity is estimated to be h = 1.0 for the sandstone sample used in the tests assuming a temperature of 298 K, according to Florence et al. (2007). However, Florence et al. (2007)mention that the actual temperaturewas unknown for the data involved in their studies and they simply assumed the value of 298K for their calculations.5 ConclusionsThe present approach rigorously accounts for the effect of the characteristic parameters of porous media including intrinsic permeability, porosity, and tortuosity on the apparent gas permeability, rarefaction coefficient, and Klinkenberg gas slippage factor. Improved formulations presented in this study have been proven to be instrumental in accurate correlation of experimental data for effective description of gas flow in tight porous media. This has been demonstrated by correlating the available data more accurately than the previous attempts.中文译文致密多孔介质中气体视渗透率的有效联系Faruk Civan摘要:通过致密多孔介质的气体流动状态是被标准的哈根泊肃叶典型方程的严格应用所描述。合适的实现是在基于多孔介质中最好的流动路线实现的条件下作为一束弯曲的毛细管完成的。在这里呈现的改进之后的公式和方法论是被展示来提供准确而有意义的数据之间的关系,就多孔介质特有参数的影响而言,这些参数包括绝对渗透率、孔隙率、关于气体视渗透率的弯曲度、膨胀率和克林伯格气体滑动系数。关键词:致密多孔介质、气体视渗透率、膨胀系数、克林伯格气体滑动系数、弯曲度1引言 对通过致密多孔介质的不同流动气体状态的描述已经引起了人们高度的重视,这是因为传统的达西定律除了不能实际的描述粘性流动状态,还不能描述多种其它相关的流动状态。例如,Javadpour已经断定了页岩中的气体流动偏离了传统的菲克和达西定律所描述的行径。因此,已经尝试了许多方法来描述在不同状态下通过致密介质的气体转移。当从例如页岩气和煤层气储藏所等不常规的气体储藏所中抽取出碳氢化合物气体时,这些尝试是极具实际价值的。Skjetne和Gudmundsson,Skjetne 和Auriault曾经根据纳威尔斯托克斯方程理论性的研究过多孔介质中的壁面滑移气体流动现象,但并没有为克林伯格效应提供任何的联系。Wu 也曾经从实验室为克林伯格系数开发了一些列解析程序并且测试良好,但仍然没有提供出任何的与其相关的联系。在评估过各方面可利用的关系后,Sampath和Keighin在水存在的情况下为多孔介质中的氮气克林伯格系数提供了一个改良的关系,其关系如下: 在这里bk的单位是Pa,K的单位是m2,是分数。这个关系的重要性是因为它的指数非常靠近从本文中获得的-0.50的指数值。Beskok和Karniadakis研究出了一个包含致密多孔介质中的基本流动状态的标准哈根泊肃叶方程,这些流动状态包括连续的液体流动、滑动流动、过渡流动和自由分子流动状态。有能力在一个独立的方程中表现出四种流动状态,这是一个非常杰出的成就。然而,这种不规格的可利用的膨胀系数数据的经验主义关系是一个复杂的数学三角函数。正如在本文中展现的一样,同一数据的许多准确关系不能用一个简单的逆幂律函数来完成。Florence尝试用利用Beskok和Karniadakis提出的哈根泊肃叶典型方程为致密多孔介质的视渗透率得到一个通用的表达并且通过实验室数据让一些基本的参数联系起来,这些参数包括克林伯格滑动系数和不计弯曲的克努森数。因此,虽然他们所有人的方法论是合理的,但当使用哈根泊肃叶典型方程的应用时,他们的公式和数据分析程序正如本文所指出的一样仍然需要重要的改进。他们的实验忽略了许多重要问题。Beskok和Karniadakis提出的哈根泊肃叶典型方程已经由一个单头管流得到。当这束在致密多孔介质中更优流动路线的弯管被考虑进时,这个数字和在多孔介质中形成的更优流动路线应该被考虑为重要的参数。其次,被Florence采取的为克林伯格滑动系数关系的方法是不正确的并且它们的关系不能代表所有范围内的气体分子质量(通常称为重量)。这些错误在本文中被一种严格的方法所纠正,这种方法用一个等于1.0的回归系数为他们的数据引出了一种准确的关系。另外,通过致密多孔介质的弯曲能利用从常规气体测试中得到的流动数据,现在的分析被应用到一种实际方法中。考虑到作者的知识,这种方法现在没有存在于文献中。因此,本文最初的目标简化为三个: 膨胀系数的相互关系 视渗透率方程的推导 克林伯格气体滑动系数的相互关系这些问题将在接下来的部分通过理论方法和严格的分析实验数据得到解决和证实。2膨胀率的相互关系Beskok和Karniadakis通过一个单头管为测定气体流量得到了一个标准的哈根泊肃叶典型方程,方程如下: 流量条件函数f(Kn)为: 克努森数为: 这里Rh和Lh表示水力半径和流量管长度,表示平均自由径,如下所示: 这里p表示绝对压强,单位是Pa;T是绝对温度,单位是K;M表示分子质量,单位是kg/kmol;Rg = 8314 J/kmol/K是普通气体常数;是气体粘度,单位是Pa.s。根据Schaaf和C
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:开元煤矿1.8Mta新井设计含5张CAD图.zip
链接地址:https://www.renrendoc.com/p-41845127.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!