.反比例函数的实际运用_第1页
.反比例函数的实际运用_第2页
.反比例函数的实际运用_第3页
.反比例函数的实际运用_第4页
.反比例函数的实际运用_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

172 实际问题与反比例函数 教学目标 1知识与技能 学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题 2过程与方法 感受实际问题的探索方法,培养化归的数学思想和分析问题的能力 3情感、态度与价值观 体验函数思想在解决实际问题中的应用,养成用数学的良好习惯 教学重点难点 重点:用反比例函数解决实际问题 难点:构建反比例函数的数学模型 课时安排 2课时 教与学互动设计第1课时 (一)创设情境,导入新课 (二)合作交流,解读探究 探究 归纳 常见的与实际相关的反比例 (1)面积一定时,矩形的长与宽成反比例; (2)面积一定时,三角形的一边长与这边上的高成反比例; (3)体积一定时,柱(锥)体的底面积与高成反比例; (4)工作总量一定时,工作效率与工作时间成反比例; (5)总价一定时,单价与商品的件数成反比例; (6)溶质一定时,溶液的浓度与质量成反比例 (三)应用迁移,巩固提高 例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m (1)试求眼镜度数y与镜片焦距x之间的函数关系式; (2)求1 000度近视眼镜镜片的焦距 例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象 (1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的解析式; (3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完? 备选例题 (2005年中考四川)制作一种产品,需先将材料加热到达60后,再进行操作设该材料温度为y(),从加热开始计算的时间为x(分钟)据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示)已知该材料在操作加工前的温度为15,加热5分钟后温度达到60 (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间? 【答案】 (1)将材料加热时的关系式为:y=9x+15(0x5),停止加热进行操作时的关系式为y=(x5);(2)20分钟 (四)总结反思,拓展升华 1学会把实际问题转化为数学问题,充分体现数学知识来源于实际生活又服务于实际生活这一原理 2能用函数的观点分析、解决实际问题,让实际问题中的量的关系在数学模型中相互联系,并得到解决 (五)课堂跟踪反馈5面积为2的ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是(C) 开放探究 6为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒已知,药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示)现测得药物8分钟燃毕,此室内空气中每立方米的含药量为6毫克,请你根据题中所提供的信息,解答下列问题: (1)药物燃烧时y关于x的函数关系式为: y=x ,自变量的取值范围是: 0x8 ;药物燃烧后y与x的函数关系式为: y= ; (2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过 30 分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】 有效,因为燃烧时第4分钟含药量开始高于3毫克,当到第16分钟含药量开始低于3毫克,这样含药量不低于3毫克的时间共有16-4=12分钟,故有效第2课时 (一)创设情境,导入新课 公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡也可这样描述:阻力阻力臂动力动力臂 为此,他留下一句名言:给我一个支点,我可以撬动地球! (二)合作交流,解读探究 问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别是1200N和0.5m (1)动力F和动力臂L有怎样的函数关系?当动力臂为1.5m时,撬动石头至少要多大的力? (2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少? (三)应用迁移,巩固提高 例1在某一电路中,电源电压U保持不变,电流I(A)与电阻R()之间的函数关系如图所示 (1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A时,电路中电阻R的取值范围是什么? 例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(千帕是一种压强单位) (1)写出这个函数的解析式; (2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,气球的体积应不小于多少? 【分析】 在此题中,求出函数解析式是关键 解:设函数的解析式为P=,把点A(1.5,64)的坐标代入,得k=96,所以所求的解析式为P=; (2)V=0.8m3时,P=120(千帕); (3)由题意P144(千帕),所以144,所以V

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论