高中数学 单元及综合测试6 新人教B版选修12.doc_第1页
高中数学 单元及综合测试6 新人教B版选修12.doc_第2页
高中数学 单元及综合测试6 新人教B版选修12.doc_第3页
高中数学 单元及综合测试6 新人教B版选修12.doc_第4页
高中数学 单元及综合测试6 新人教B版选修12.doc_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

阶段性测试题六(第一章基本知能检测)时间120分钟,满分150分。一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1下列说法正确的是()a任何两个变量都具有相关关系b球的体积与该球的半径具有相关关系c农作物的产量与施化肥量之间是一种确定性的关系d某商品的生产量与该商品的销售价格之间是一种非确定性的关系答案d解析从相关关系定义出发知a、b、c不正确,b是函数关系,c是相关关系2已知x,y之间的一组数据()x0123y1357则y与x的回归直线方程bxa必过()a(2,2)点b(1.5,0)点c(1,2)点 d(1.5,4)点答案d解析bxa必经过(,)这个点3下图中的两个变量,具有相关关系的是()答案b解析a、c是确定的函数关系,d不具备相关关系4为了考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某高中学生中随机地抽取300名学生,得到下表:喜欢数学课程不喜欢数学课程合计男3785122女35143178合计72228300则可求得2等于()a3.335 b12.624c4.514 d8.597答案c解析24.514.5某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程77.361.82x,则以下说法中正确的是()a预计产量每增加1000件,单位成本下降1.82元b预计产量每减少1000件,单位成本上升1.82元c预计产量每增加1000件,单位成本上升1.82元d预计产量每减少1000件,单位成本下降1.82元答案a解析由回归系数的意义知a正确6部分国家13岁学生数学测验平均分数为:中国韩国瑞士俄罗斯法国以色列加拿大英国美国约旦授课天数251222207210174215188192180191分数80737170646362615546对于是否存在回归直线,下列说法正确的是()a一定存在b可能存在也可能不存在c一定不存在d以上都不正确答案a7某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用条形图表示(如图)根据条形图可得这50名学生这一天平均每人的课外阅读时间为()a0.6小时 b0.9小时c1.0小时 d1.5小时答案b解析这一天平均每人的课外阅读时间应为这一天的总阅读时间与学生数的比,即0.9(小时)8对四对变量y和x进行线性相关性检验,已知n是观测值组数,r是相关系数,且已知n7,r0.953 3;n15,r0.301 2;n17,r0.499 1;n3,r0.995 0,则y和x具有线性相关关系的是()a和 b和c和 d和答案b解析n7,由n2725在附表中查得r0.050.754,而r0.953 3,|r|r0.05,y与x具有线性相关关系,所以c、d不正确;n15,n215213.由表中可查得r0.050.514,而r0.301 2,所以|r|r0.05,没有理由说明y与x有线性相关关系9根据某设备的使用年限x(年)和支出的维修费用y(万元)呈线性关系,计算得4,5,xxxxx90,x1y1x2y2x3y3x4y4x5y5112.3,则y对x的回归直线方程是()a.0.081.23xb.0.081.23xc.1.230.08xd.1.230.08x答案a解析由回归直线方程公式计算可得10下列关于2的说法中正确的是()a2在任何相互独立问题中都可以用来检验有关还是无关b2的值越大,两个分类变量的相关性就越大c2是用来判断两个分类变量是否有关系的随机变量,当2的值很小时可以推断两个分类变量不相关d2的计算公式为2答案b解析2的值只适用于22列联表问题11(2009四川文)设矩形的长为a,宽为b,其比满足ba0.618,这种矩形给人以美感,称为黄金矩形,黄金矩形常用于工艺品设计中下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是()a甲批次的总体平均数与标准值更接近b乙批次的总体平均数与标准值更接近c两个批次总体平均数与标准值接近程度相同d两个批次总体平均数与标准值接近程度不确定答案a解析甲批次的平均数为0.617,乙批次的平均数为0.613.12(2009宁夏/海南)对变量x,y有观测数据(xi,yi)(i1,2,10),得散点图110;对变量u,v有观测数据(ui,vi)(i1,2,10),得散点图111.由这两个散点图可以判断()a变量x与y正相关,u与v正相关b变量x与y正相关,u与v负相关c变量x与y负相关,u与v正相关d变量x与y负相关,u与v相关答案c解析由这两个散点图可以判断,变量x与y负相关,u与v正相关二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13(2009湖北高考)甲、乙、丙三人将参加某项测试,他们能达标的概率分别为0.8,0.6,0.5,则三人都达标的概率为_,三人中至少有一人达标的概率是_答案0.240.96解析三人均达标的概率为p10.80.60.50.24,三人中至少有一人达标的概率为p21(10.8)(10.6)(10.5)0.96.14(2009合肥模拟)在2009年春节期间,某市场物价部门对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:价格x99.51010.511销售量y1110865通过分析,发现销售量y对商品的价格x具有线性相关关系,则销售量y对商品的价格x的回归直线方程为_答案3.2x4015实验测得四组(x,y)的值分别为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为_答案x1解析由(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为x1.16有下列关系:(1)人的年龄与他(她)拥有的财富之间的关系;(2)曲线上的点与该点的坐标之间的关系;(3)苹果的产量与气候之间的关系;(4)森林中的同一种树木,其断面直径与高度之间的关系;(5)学生与他(她)的学号之间的关系其中有相关关系的是_答案(1)(3)(4)解析经判断(1)(3)(4)有相关关系三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17(本题满分12分)为调查学生对国家大事的关心是否与性别有关,在学生中随机抽样调查,结果如下:关心不关心合计男生18218200女生17624200合计35842400试据上表的数据作出统计推断解析由公式得:20.9577,因为0.95776.635,因此,我们有99%的把握说40岁以上的人患胃病与否和生活规律有关19(本题满分12分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,另外的27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外的33人主要的休闲方式是运动(1)根据以上数据建立一个22列联表;(2)判断性别与休闲方式是否有关系解析(1)22列联表为:休闲方式性别看电视运动合计女432770男213354合计6460124(2)由列联表中的数据,计算26.201,因为6.2015.024,所以有99.5%的把握认为“休闲方式与性别有关”20(本题满分12分)在钢线碳含量对于电阻的效应的研究中,得到如下表所示的一数据:碳含量x/%0.100.300.400.550.700.800.9520时电阻y/1518192122.623.826求y与x的回归直线方程,并检验回归方程的显著性解析钢线碳含量对电阻的效应数据如下表:ixiyixyxiyi10.1150.012251.520 .3180.093245.430.4190.163617.640.55210.302 544111.5550.7022.60.49510.7615.8260.8023.80.64566.4419.0470.95260.902.567624.73.8145.42.5953 104.285.61由上表中数据,得0.543,145.420.77,12.55,20.7712.550.54313.96.故回归直线方程13.9612.55x.利用相关系数检验法检验回归方程的显著性:xiyi7 85.6170.54320.776.66,x722.5957(0.543)20.531057,y723 104.2720.77284.449 7,r0.998 7.对于a0.55,自由度725,查相关系数表得临界值r0.050.754.对于a0.01,自由度5,查相关系数表得临界值r0.010.874.由于r0.998 70.632,所以说明累积人次与播放天数之间存在着线性相关关系,这个结论表明,求关于两个变量之间的回归直线方程是有意义的(3)46.9,288.746.95.530.75,因此所求的回归直线方程是46.9x30.75.(4)当x16天时,的估计值是46.91630.75781.15781.即当播放天数为16天时,估计累计人次为781人22(本题满分14分)(2009泰安高二检测)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x()1011131286就诊人数y(个)222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程x;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论