




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年中考数学复习专题:探究型问题考点一:动态探索型:例1 如图所示,在菱形ABCD中,AB=4,BAD=120,AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值考点二:结论探究型:例3 如图所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向ABC外作正方形CADF和正方形CBEG,过点D作DD1l于点D1,过点E作EE1l于点E1(1)如图,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系(不需要证明)例4 在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OBOA,交抛物线于点B,以OA、OB为边构造矩形AOBC(1)如图1,当点A的横坐标为 时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,求点B的坐标;将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=x2,试判断抛物线y=x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由 例6 如图所示,已知二次函数y=ax2+bx1(a0)的图象过点A(2,0)和B(4,3),l为过点(0,2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PHl,H为垂足(1)求二次函数y=ax2+bx1(a0)的解析式;(2)请直接写出使y0的对应的x的取值范围;(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;(4)试问是否存在实数m可使POH为正三角形?若存在,求出m的值;若不存在,请说明理由考点四:存在探索型:例7 如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,ABOC,AOC=90,BCO=45,BC=6,点C的坐标为(9,0)(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=2,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,是否存在点P,使以O、E、P为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由例8 如图,在平面直角坐标系中有RtABC,A=90,AB=AC,A(2,0)、B(0,1)、C(d,2)(1)求d的值;(2)将ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B、C正好落在某反比例函数图象上请求出这个反比例函数和此时的直线BC的解析式;(3)在(2)的条件下,直线BC交y轴于点G问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由四、中考真题演练1如图,直线y=2x6与反比例函数y=的图象交于点A(4,2),与x轴交于点B(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由2如图,直线y=2x+2与y轴交于A点,与反比例函数(x0)的图象交于点M,过M作MHx轴于点H,且tanAHO=2(1)求k的值;(2)点N(a,1)是反比例函数(x0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由3如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数(xO)的图象相交于B、C两点(1)若B(1,2),求k1k2的值;(2)若AB=BC,则k1k2的值是否为定值?若是,请求出该定值;若不是,请说明理由4如图,在平面直角坐标系中,平行四边形OABC的顶点A、C的坐标分别为A(2,0)、C(1,2),反比例函数y=(k0)的图象经过点B(1)求k的值(2)将平行四边形OABC沿x轴翻折,点C落在点C处,判断点C是否在反比例函数y=(k0)的图象上,请通过计算说明理由7如图,抛物线y=x22x+c的顶点A在直线l:y=x5上(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由8如图,经过原点的抛物线y=x2+2mx(m0)与x轴的另一个交点为A过点P(1,m)作直线PMx轴于点M,交抛物线于点B记点B关于抛物线对称轴的对称点为C(B、C不重合)连接CB,CP(1)当m=3时,求点A的坐标及BC的长;(2)当m1时,连接CA,问m为何值时CACP?(3)过点P作PEPC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由9如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EFx轴,垂足为点F,点P在抛物线上,且位于对称轴的右侧,PMx轴,垂足为点M,PCM为等边三角形(1)求该抛物线的表达式;(2)求点P的坐标;(3)试判断CE与EF是否相等,并说明理由;(4)连接PE,在x轴上点M的右侧是否存在一点N,使CMN与CPE全等?若存在,试求出点N的坐标;若不存在,请说明理由10如图,半径为2的C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0)若抛物线y=x2+bx+c过A、B两点(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得PBO=POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,MAB的面积为S,求S的最大(小)值12(1)操作发现:如图,D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论(2)类比猜想:如图,当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:如图,当动点D在等边ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF,连接AF、BF,探究AF、BF与AB有何数量关系?并证明你探究的结论如图,当动点D在等边边BA的延长线上运动时,其他作法与图相同,中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论13(1)问题探究如图1,分别以ABC的边AC与边BC为边,向ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使AHK=ACD1作D1MKH,D2NKH,垂足分别为点M,N试探究线段D1M与线段D2N的数量关系,并加以证明(2)拓展延伸如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使AH1K1=BH2K2=ACD1作D1MK1H1,D2NK2H2,垂足分别为点M,ND1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由如图3,若将中的“正三角形”改为“正五边形”,其他条件不变D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)14如图,ABC是边长为3的等边三角形,将ABC沿直线BC向右平移,使B点与C点重合,得到DCE,连接BD,交AC于F(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长15如图,已知抛物线y=x2(b+1)x+(b是实数且b2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C(1)点B的坐标为 ,点C的坐标为 (用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得QCO,QOA和QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由16如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q(1)求h的值;(2)通过操作、观察,算出POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状17小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则B1C=x+0.7,A1C=ACAA1=0.4=2而A1B1=2.5,在RtA1B1C中,由+=得方程 ,解方程得x1= ,x2= ,点B将向外移动 米(2)解完“思考题”后,小聪提出了如下两个问题:【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题20如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CEAB于E,设ABC=(6090)(1)当=60时,求CE的长;(2)当6090时,是否存在正整数k,使得EFD=kAEF?若存在,求出k的值;若不存在,请说明理由连接CF,当CE2CF2取最大值时,求tanDCF的值21已知:O是ABC的外接圆,AB为O的直径,弦CD交AB于E,BCD=BAC(1)求证:AC=AD;(2)过点C作直线CF,交AB的延长线于点F,若BCF=30,则结论“CF一定是O的切线”是否正确?若正确,请证明;若不正确,请举反例23如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH(1)求证:APB=BPH;(2)当点P在边AD上移动时,PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由25在RtABC中,C=90,AC=3,BC=4,AB=5()探究新知如图,O是ABC的内切圆,与三边分别相切于点E、F、G(1)求证:内切圆的半径r1=1; (2)求tanOAG的值;()结论应用(1)如图,若半径为r2的两个等圆O1、O2外切,且O1与AC、AB相切,O2与BC、AB相切,求r2的值;(2)如图,若半径为rn的n个等圆O1、O2、On依次外切,且O1与AC、AB相切,On与BC、AB相切,O1、O2、On均与AB相切,求rn的值26课本中,把长与宽之比为的矩形纸片称为标准纸请思考解决下列问题:(1)将一张标准纸ABCD(ABBC)对开,如图1所示,所得的矩形纸片ABEF是标准纸请给予证明(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(ABBC)进行如下操作:第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长2718已知梯形ABCD,ADBC,ABBC,AD=1,AB=2,BC=3,问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 子宫肌瘤教学课件
- 子宫内膜癌医学课件
- 年度安全培训表课件
- 年度培训专职安全员课件
- 年底安全生产培训会议课件
- 年后复工安全培训课件
- 工业成本核算课件
- 2024年黑河北安市事业单位招聘考试真题
- 2025年外来纵向科研项目经费资助合同书6篇
- 委托培训交通安全课件
- 2025湖南益阳安化县事业单位招聘工作人员61人考试参考试题及答案解析
- 7 呼风唤雨的世纪 课件
- 电瓶托盘堆垛车安全培训课件
- 快递分拣中心操作流程及安全规范
- 机加工安全质量培训计划课件
- 2025年全国计算机等级考试三级网络技术模拟题及答案
- 2025至2030年中国卡丁车俱乐部行业市场调研分析及投资战略咨询报告
- 建设项目环境影响评价分类管理名录(报告书、表、登记表)
- 加油站职业健康危害因素分析
- 2025年杭州市上城区九堡街道社区卫生服务中心招聘编外4人笔试备考试题及答案解析
- 2025年煤矿从业人员安全培训考试题库及答案
评论
0/150
提交评论