


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3课 函数的单调性【考点导读】1.理解函数单调性,最大(小)值及其几何意义;2.会运用单调性的定义判断或证明一些函数的增减性【基础练习】1.下列函数中: ; ; ; 其中,在区间(0,2)上是递增函数的序号有_2.函数的递增区间是_ r _3.函数的递减区间是_4.已知函数在定义域r上是单调减函数,且,则实数a的取值范围_5.已知下列命题:定义在上的函数满足,则函数是上的增函数;定义在上的函数满足,则函数在上不是减函数;定义在上的函数在区间上是增函数,在区间上也是增函数,则函数在上是增函数;定义在上的函数在区间上是增函数,在区间上也是增函数,则函数在上是增函数其中正确命题的序号有_【范例解析】例 . 求证:(1)函数在区间上是单调递增函数;(2)函数在区间和上都是单调递增函数分析:利用单调性的定义证明函数的单调性,注意符号的确定证明:(1)对于区间内的任意两个值,且,因为,又,则,得,故,即,即所以,函数在区间上是单调增函数(2)对于区间内的任意两个值,且,因为,又,则,得,故,即,即所以,函数在区间上是单调增函数同理,对于区间,函数是单调增函数;所以,函数在区间和上都是单调增函数点评:利用单调性定义证明函数的单调性,一般分三步骤:(1)在给定区间内任意取两值,;(2)作差,化成因式的乘积并判断符号;(3)给出结论例2.确定函数的单调性分析:作差后,符号的确定是关键解:由,得定义域为对于区间内的任意两个值,且,则又,即所以,在区间上是增函数点评:运用有理化可以对含根号的式子进行符号的确定【反馈演练】1已知函数,则该函数在上单调递_减_,(填“增”“减”)值域为_2已知函数在上是减函数,在上是增函数,则_25_.3. 函数的单调递增区间为.4. 函数的单调递减区间为 5. 已知函数在区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供水考试题及答案
- 点考试题及答案
- 抗震考试题及答案
- 中外名曲赏析知到智慧树答案
- 中西美食鉴赏知到智慧树答案
- 验光员模拟试题+答案
- 中西医结合临床科研思维与方法知到智慧树答案
- 多重耐药菌感染防控知识培训考核试卷(附答案)
- 第四章血液循环阶梯测试题(附答案)
- 2025年公务员特定项目担保合同规范文本
- 陈腐垃圾施工方案
- 渤海大学《软件工程》2022-2023学年第一学期期末试卷
- 税务会计岗位招聘笔试题及解答(某大型国企)2024年
- ICD-10疾病编码完整版
- 消防设备设施操作讲解培训讲课文档
- 内分泌科医疗管理制度
- 临床开展十二项细胞因子检测临床意义
- FlowmasterV7中文技术手册
- 房屋承包出租合同
- 石油化学工业的发展历程与前景
- 《滚珠丝杠螺母副》课件
评论
0/150
提交评论