2.1圆(1).doc_第1页
2.1圆(1).doc_第2页
2.1圆(1).doc_第3页
2.1圆(1).doc_第4页
2.1圆(1).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.1圆(1)学习目标:1理解圆的描述定义,了解圆的集合定义;2经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系;3初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题.学习重点:确定点和圆的三种位置关系以及圆的集合概念的理解.学习难点:点和圆的三种位置关系的理解和应用.学习准备:一、知识准备:如图,一根长4米的绳子,一端拴在树上,另一端拴着一只小狗,请画出小狗的活动区域.树S小狗4m二、学具准备:圆规、直尺、铅笔学习过程:一、预习质疑(自学课本P38至P39,完成下列各题)1确定一个圆的两个要素是 和 ;圆心确定圆的 ,半径确定圆的 .2点和圆有 种位置关系,分别是 .CAOBD(第3题)3如图,A、B、C、D四点与O位置关系分别是:二、展示探究1情境引入(1)日常生活中,我们见到的汽车、摩托车、自行车等交通工具的车轮是什么形状的?为什么要做成这种形状?能改成其他形状(如正方形、三角形)会发生怎样的情况?(2)探究活动:固定点O将线段OP绕点O旋转一周观察点P所形成了怎样的图形。答: .2圆的描述定义(运动的观点)oA如图,在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点 随之旋转所形成的图形叫做圆,固定的端点叫圆心,线段叫做半径.以点为圆心的圆,记作“”,读作“圆”3圆的集合定义(集合的观点)(1)思考:平面上的一个圆把平面上的点分成 部分.(2)圆是到定点距离 定长的点的集合.圆的内部是 的点的集合;圆的外部是 的点的集合.4在平面内,点与圆的位置关系如图,在平面内任意取一点P,点与圆有 种位置关系.若O的半径为r,点P到圆心O的距离为d,则:(1)点P在O d r (2)点P在O d r (3)点P在O d r5例题评析 例1已知点P、Q,且PQ=4cm,画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合;在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来.在所画图中,到点P的距离小于或等于2cm,且到点Q的距离大于或等于3cm的点的集合是怎样的图形?把它画出来.例2如图已知矩形ABCD的边AB=3厘米,AD=4厘米,(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?ABCD三、检测反馈1到点O的距离是3 cm的所有点的集合是 . 2O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与O的位置关系是:点A在 ;点B在 ;点C在 .3O的半径6cm,当OP=6时,点P在 ;当OP 时,点P在圆内;当OP 时,点P不在圆外.4正方形ABCD的边长为2cm,以A为圆心2cm为半径作A,则点B在A ;点C在A ;点D在A .5已知AB为O的直径,点P为O上任意一点,则点P关于AB的对称点P与O的位置为( ) A在O内 B在O外 C在O上 D不能确定6(1)已知圆外一点和圆上各点的最短距离为2,最长距离为8,则该圆的半径是_;(2)已知圆内一点和圆上各点的最短距离为2,最长距离为8,则该圆的半径_.四、体会与交流1圆的定义:2点与圆的位置关系:五、课后作业1. 到点A的距离是2 cm的所有点的集合是 . 2. 矩形ABCD边AB=6cm,AD=8cm,(1)若以A为圆心,6cm长为半径作A,则点B在A_,点C在A_,点D在A_,AC与BD的交点O在A_;(2)若作A,使B、C、D三点至少有一个点在A内,至少有一个点在A外,则A的半径r的取值范围是 _.3. (1)已知点A,试通过画图探究经过点A可画 个圆;(2)已知两点A、B,试通过画图探究过A、B可画 个圆,这些圆的圆心都在 .4. 若O的半径是2cm,OP1cm,则点 P到圆上各点的距离中最短距离为 cm,最长距离为 cm.5. 若O的半径是2cm,OP3cm,则点P到圆上各点的距离中最短距离为 cm,最长距离为 cm.6. 已知P点到圆上各点的距离中最短距离为1cm,最长距离为3cm,则O的半径为 cm.7. 如图,BD、CE是ABC的高,M为BC的中点求证:点B、C、D、E在以点M为圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论