




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
factor - Factor a Multivariate PolynomialCalling Sequences factor(a) factor(a,K)Parameters a - an expression K - a field extension over which to factorDescription The function factor computes the factorization of a multivariate polynomial with integer, rational, (complex) numeric, or algebraic number coefficients. The factor function does NOT factor integers. Nor does it factor integer coefficients in a polynomial. Use the ifactor function to factor integers. If the second argument K is not given, the polynomial is factored over the field implied by the coefficients. For example, if the coefficients are all integers then factor computes all irreducible factors with integer coefficients. Thus factor does not necessarily factor into linear factors. Note that any integer content (see first example below) is not factored. If the input, a, is a rational expression, then it is first normalized (see normal) and the numerator and denominator of the resulting expression are then factored. This provides a fully-factored form which can be used to simplify an expression in the same way the normal function is used. However, it is more expensive to compute. If the input, a, is a list, set, equation, range, series, relation, or function, then factor is applied recursively to the components of a. If the second argument K is the keyword real or complex, a floating point factorization is performed over the reals and complexes respectively. At present this is only implemented for univariate polynomials. If the second argument K is a single RootOf, a list or set of RootOfs, a single radical, or a list or set of radicals, then the expression is factored over the algebraic number field defined by K. Examples factor(6*x2+18*x-24); factor(6); ifactor(6); factor(x3-y3)/(x4-y4); factor(x3+5); factor(x3+5, 5(1/3); factor(x3+5, 5(1/3),(-3)(1/2); factor(x3+5.0); factor(x3+5,complex); factor(y4-2,sqrt(2); alias(alpha = RootOf(x2-2):factor(y4-2,alpha); factor(x3+y3); factor(x3+y3,(-3)(1/2);combine - combine terms into a single termCalling Sequence combine(f) combine(f, n) combine(f, n, opt1, opt2, .)Parameters f - any expression, or set or list of expressions n - a name or a list or set of names opt1, opt2, . - (optional) names of optionsDescription The combine function applies transformations which combine terms in sums, products, and powers into a single term. This function is applied recursively to the components of lists, sets, and relations; that is, f and n may be lists (or sets) of expressions and names, respectively. For many functions, the transformations applied by combine are the inverse of the transformations that are applied by expand. For example, consider the well-known identity sin(a+b) = sin(a)*cos(b) + cos(a)*sin(b) The expand function applies the identity from left to right whereas the combine function does the reverse. Subexpressions involving Int, Sum, and Limit are combined into one expression where possible using linearity; that is, c1*f(a,range) + c2*f(b,range) = f(c1*a+c2*b,range). A specific set of transformations is obtained by specifying a second (optional) argument n (a name) which is one or a list of the following: abs arctan conjugate exp icombine ln piecewise polylog power product Psi radical range signum trig For additional information and examples about the transformations applied by each of these, see combinen. The combine function maps over functions. Therefore combine(f(a) is the same as map(combine,f(a). Examples combine(Int(x,x=a.b)-Int(x2,x=a.b); combine(Limit(x,x=a)*Limit(x2,x=a)+c); combine(4*sin(x)3,trig); combine(exp(x)2*exp(y),exp); combine(exp(sin(a)*cos(b)*exp(cos(a)*sin(b),trig,exp); assume(y0,z0);combine(2*ln(y)-ln(z),ln); combine(xa)2,power); combine(Psi(-x)+Psi(x),Psi); combine(2*sin(x)*cos(x),2*cos(x)2-1,trig); combine(exp(sin(a)*cos(b)*exp(cos(a)*sin(b),trig,exp);simplify - Apply simplification rules to an expressionCalling Sequence simplify(expr) simplify(expr, n1, n2, .) simplify(expr, assume=prop) simplify(expr, symbolic)Parameters expr - any expression n1, n2,. - (optional) names or sets or lists prop - any property (optional)Description The simplify function is used to apply simplification rules to an expression. If only one argument is present, then simplify will search the expression for function calls, square roots, radicals, and powers. Next it will invoke the appropriate simplification procedures, which include:BesselI, BesselJ, BesselK, BesselY, D, Ei, GAMMA, RootOf, LambertW, dilog, exp, ln, sqrt, polylog, pochhammer, trig (for trig functions), hypergeom (for hypergeometrics), radical (occurrence of fractional powers), power (occurrence of powers), exp, ln), and (for operators). In the case of two or more arguments where the additional arguments are names, simplify will only invoke the simplification procedures specified by the additional arguments. Further information on the simplification procedures supported is available in the help pages simplifyname where name is one of: Ei, GAMMA, RootOf, , hypergeom, ln, polar, power, radical, sqrt, trig The symbolic option indicates that formal symbolic manipulation of expressions is allowed without regard to the analytical issue of branches for multi-valued functions. For example, the expression sqrt(x2) will simplify to x under the symbolic option whereas without this option the simplified result must take into account the different possible values of the (complex) sign of x. Note that when the symbolic option is specified, any branch of a multi-valued function can be chosen during the simplification process. The result of such an operation is in general not valid over the whole complex plane, and in fact it can lead to incorrect results in the common situation where the expressions are understood to represent analytical functions. A user can make his or her own simplifications known to the simplify function by defining a Maple procedure. If the procedure simplify/f is defined then the function call simplify(a,f) will invoke simplify/f(a). The case of two or more arguments where the additional arguments are sets or lists is used for simplification with respect to side relations. See the subtopic simplifysiderels for details. Whenever the last argument is assume=prop, all the indeterminates in expr are assumed to have the property prop to compute the simplified expression. Examples simplify(4(1/2)+3); simplify(xa)b+4(1/2), power); simplify(exp(a+ln(b*exp(c); simplify(sin(x)2+cos(x)2, trig); e := cos(x)5 + sin(x)4 + 2*cos(x)2 - 2*sin(x)2 - cos(2*x):simplify(e); f := -1/3*x5*y + x4*y2 + 1/3*x*y3 + 1:simplify(f, x3 = x*y, y2 = x+1); g:=sqrt(x2); simplify(g); simplify(g,assume=real); simplify(g,assume=positive); simplify(g,symbolic);series - generalized series expansionCalling Sequence series(expr, eqn) series(expr, eqn, n)Parameters expr - an expression eqn - an equation (such as x = a) or name (such as x) n - (optional) a non-negative integer Description The series function computes a truncated series expansion of expr, with respect to the variable x, about the point a, up to order n. If a is infinity then an asymptotic expansion is given. If eqn evaluates to a name x then the equation x = 0 is assumed. If the third argument n is present then it specifies the truncation order of the series calculations. This does not mean the truncation order of the actual series. See Order for more information about this. If n is not present, the truncation order is determined by the global variable Order. The user may assign any non-negative integer to Order. The default value of Order is 6. See Order for more information. If the series is not exact then an order term (for example O(x6) ) is the last term in the series. It is possible to invoke series on user-defined functions. For example, if the procedure series/f is defined then the function call series(f(x,y),x) will invoke series/f(x,y,x) to compute the series. Note that this user-defined function series/f must return a series data structure, not just a polynomial (see typeseries). If series is applied to an unevaluated integral then the series expansion of the integral will be computed (if possible). The result of the series function is a generalized series expansion. This could be a Taylor series or a Laurent series or a more general series. Formally, the coefficients in a generalized s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨柜设计培训课件
- 2025年人工智能与机器学习课程期末考试题及答案
- 2025年度中小企业财务风险防控与合规管理培训协议
- 湖南地质中学2024-2025学年高一下学期7月期末考试生物试题
- 2025年印刷厂临时工工时调整与劳动权益保护合同范本
- 2025公务员法考试题及答案
- 2025款智能翻译bot系统定制开发合作协议
- 2025年城市公寓转租协议书及租赁双方责任划分合同
- 2025年度智能城市公共设施标识系统设计合作协议
- 2025年度绿色家电销售协议及服务规范
- 2025年应急管理普法知识竞赛历年参考题库含答案详解(5套)
- 2025年小学生爱粮节粮科普知识竞赛试题(含答案)
- 水池结构混凝土质量缺陷处理方案范文
- 2025驾驶员安全教育培训考试试卷(及答案)
- 人工智能替代效应研究-洞察及研究
- GB/T 33474-2025物联网参考体系结构
- 基建期奖励管理办法
- 图解自然资源部《自然资源领域数据安全管理办法》
- 2023年烟台蓝天投资开发集团有限公司招聘笔试题库及答案解析
- 模版协议认购协议东方国际广场七号楼购房确认书(最新修改)
- 表面处理标准大众13750中文
评论
0/150
提交评论