




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辅助线,如何添?人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。在几何题的证明或求解时,需要构成一些基本图形来求证(解)时往往要通过添加辅助线(图)来形成,添加辅助线(图),构成的基本图形是结果,构造的手段是方法。(1)构造基本图形;(2)构造等腰(边)三角形:(3)构造直角三角形;(4)构造全等三角形;(5)构造特殊四边形;(6)基本辅助线;(7)截取和延长变换;(8)对称变换;(9)平移变换;(10)旋转变换。一、构造基本图形:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形。如平行线,垂直线,直角三角形斜边上中线,三角形、四边形的中位线等。等腰(边)三角形、直角三角形、全等三角形、特殊四边形都是基本图形。典型例题:例1. (2012湖北襄阳3分)如图,直线lm,将含有45角的三角板ABC的直角顶点C放在直线m上,若1=25,则2的度数为【 】A20 B25 C30 D35【答案】A。【考点】平行线的性质。【分析】如图,过点B作BDl,直线lm,BDlm。1=25,4=1=25。ABC=45,3=ABC4=4525=20。2=3=20。故选A。例2.(2012四川内江3分)如图,【 】A. B. C. D.【答案】B。【考点】平行的性质,三角形外角性质。【分析】如图,反向延长,形成4。 ,3=18004。 又2=14,即4=21。 。故选B。例3.(2012广东梅州3分)如图,AOE=BOE=15,EFOB,ECOB,若EC=1,则EF= 【答案】2。【考点】角平分线的性质,平行的性质,三角形外角性质,含30度角的直角三角形的性质。【分析】作EGOA于F,EFOB,OEF=COE=15,AOE=15,EFG=15+15=30。EG=CE=1,EF=21=2。例4.(2012广东佛山3分)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是【 】 A平行四边形B矩形C菱形D梯形【答案】 A。【考点】三角形中位线定理,平行四边形的判定。【分析】根据题意画出图形,如右图所示:连接AC,四边形ABCD各边中点是E、F、G、H,HGAC,HG=AC,EFAC,EF=AC。EF=GH,EFGH。四边形EFGH是平行四边形。由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或ACBD不一定成立,从而得不到矩形或菱形的判断。故选A。 例5.(2012江苏宿迁3分)已知点E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,若ACBD,且ACBD,则四边形EFGH的形状是 .(填“梯形”“矩形”“菱形” )【答案】矩形。【考点】三角形中位线定理,矩形的判定。【分析】如图,连接AC,BD。 E,F,G,H分别是AB,BC,CD,DA的中点,根据三角形中位线定理,HEABGF,HGACEF。又ACBD,EHG=HGF=GFE=FEH=900。四边形EFGH是矩形。且ACBD,四边形EFGH邻边不相等。四边形EFGH不可能是菱形。例6.(2012湖北天门、仙桃、潜江、江汉油田3分)如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到AME当AB=1时,AME的面积记为S1;当AB=2时,AME的面积记为S2;当AB=3时,AME的面积记为S3;当AB=n时,AME的面积记为Sn当n2时,SnSn1= 【答案】。【考点】正方形的性质,平行的判定和性质,同底等高的三角形面积,整式的混合运算。【分析】连接BE,在线段AC同侧作正方形ABMN及正方形BCEF,BEAM。AME与AMB同底等高。AME的面积=AMB的面积。当AB=n时,AME的面积为,当AB=n1时,AME的面积为。当n2时,。例7.(2012江苏镇江6分)如图,在四边形ABCD中,ADBC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在BC边上,且GDF=ADF。(1)求证:ADEBFE;(2)连接EG,判断EG与DF的位置关系,并说明理由。【答案】解:(1)证明:ADBC,ADE=BFE(两直线平行,内错角相等)。 E是AB的中点,AE=BE。 又AED=BEF,ADEBFE(AAS)。 (2)EG与DF的位置关系是EGDF。理由如下: ADE=BFE,GDF=ADF,GDF=BFE(等量代换)。GD=GF(等角对等边)。 又ADEBFE,DE=EF(全等三角形对应边相等)。EGDF(等腰三角形三线合一)。【考点】平行的性质,全等三角形的判定和性质,等腰三角形的判定和性质。【分析】(1)由已知,应用AAS即可证明ADEBFE。 (2)由ADE=BFE,GDF=ADF可得GDF=BFE,从而根据等角对等边得GD=GF;由(1)ADEBFE可得DE=EF。根据等腰三角形三线合一的性质可得EGDF。二、构造等腰(边)三角形:当问题中出现一点发出的二条相等线段时往往要补完整等腰(边)三角形;出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰(边)三角形。通过构造等腰(边)三角形,应用等腰(边)三角形的性质得到一些边角相等关系,达到求证(解)的目的。典型例题:例1. (2012浙江丽水、金华4分)如图,在等腰ABC中,ABAC,BAC50BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则CEF的度数是 【答案】50。【考点】翻折变换(折叠问题),等腰三角形的性质,三角形内角和定理,线段垂直平分线的判定和性质。【分析】利用全等三角形的判定以及垂直平分线的性质得出OBC40,以及OBCOCB40,再利用翻折变换的性质得出EOEC,CEFFEO,进而求出即可:连接BO,ABAC,AO是BAC的平分线,AO是BC的中垂线。BOCO。BAC50,BAC的平分线与AB的中垂线交于点O,OABOAC25。等腰ABC中, ABAC,BAC50,ABCACB65。OBC652540。OBCOCB40。点C沿EF折叠后与点O重合,EOEC,CEFFEO。CEFFEO(18002400)250。例2.(2012甘肃白银10分)如图,已知ABC是等边三角形,点D、F分别在线段BC、AB上,EFB=60,DC=EF(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD【答案】证明:(1)ABC是等边三角形,ABC=60。EFB=60,ABC=EFB。EFDC(内错角相等,两直线平行)。DC=EF,四边形EFCD是平行四边形。(2)连接BE。BF=EF,EFB=60,EFB是等边三角形。EB=EF,EBF=60。DC=EF,EB=DC。ABC是等边三角形,ACB=60,AB=AC。EBF=ACB。AEBADC(SAS)。AE=AD。【考点】等边三角形的性质,平行的判定,平行四边形的判定,全等三角形的判定和性质,。【分析】(1)由ABC是等边三角形得到B=60,而EFB=60,由此可以证明EFDC,而DC=EF,然后即可证明四边形EFCD是平行四边形;(2)如图,连接BE,由BF=EF,EFB=60可以推出EFB是等边三角形,然后得到EB=EF,EBF=60,而DC=EF,由此得到EB=DC,又ABC是等边三角形,所以得到ACB=60,AB=AC,由SAS即可证明AEBADC,利用全等三角形的性质就证明AE=AD。三、构造直角三角形:通过构造直角三角形,应用直角三角形的性质得到一些边角关系(勾股定理,两锐角互余),达到求证(解)的目的。典型例题:例2. (2012广西河池3分)如图,在矩形ABCD中,ADAB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连结CN若CDN的面积与CMN的面积比为14,则 的值为【 】A2B4 CD【答案】D。【考点】翻折变换(折叠问题),折叠的性质,矩形、菱形的判定和性质,勾股定理。【分析】过点N作NGBC于G,由四边形ABCD是矩形,易得四边形CDNG是矩形,又由折叠的性质,可得四边形AMCN是菱形,由CDN的面积与CMN的面积比为1:4,根据等高三角形的面积比等于对应底的比,可得DN:CM=1:4,然后设DN=x,由勾股定理可求得MN的长,从而求得答案: 过点N作NGBC于G,四边形ABCD是矩形,四边形CDNG是矩形,ADBC。CD=NG,CG=DN,ANM=CMN。由折叠的性质可得:AM=CM,AMN=CMN,ANM=AMN。AM=AN。AM=CM,四边形AMCN是平行四边形。AM=CM,四边形AMCN是菱形。CDN的面积与CMN的面积比为1:4,DN:CM=1:4。设DN=x,则AN=AM=CM=CN=4x,AD=BC=5x,CG=x。BM=x,GM=3x。在RtCGN中,在RtMNG中,。故选D。例3.(2012北京市5分)如图,在四边形ABCD中,对角线AC,BD交于点E,BAC=900,CED=450,DCE=900,DE=,BE=2求CD的长和四边形ABCD的面积【答案】解:过点D作DHAC,CED=45,DHEC,DE=,EH=DH=1。又DCE=30,DC=2,HC=。AEB=45,BAC=90,BE=2,AB=AE=2。AC=2+1+ =3+。 。【考点】勾股定理,含30度角的直角三角形的性质,等腰直角三角形的性质,【分析】利用等腰直角三角形的性质得出EH=DH=1,进而得出再利用直角三角形中30所对边等于斜边的一半得出CD的长,求出AC,AB的长即可得出四边形ABCD的面积。四、构造全等三角形:通过构造全等三角形,应用全等三角形对应边、角相等的性质,达到求证(解)的目的。典型例题:例1 (2012山东泰安3分)如图,ABCD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是【 】A4B3C2D1【答案】D。【考点】三角形中位线定理,全等三角形的判定和性质。【分析】连接DE并延长交AB于H,CDAB,C=A,CDE=AHE。E是AC中点,DE=EH。DCEHAE(AAS)。DE=HE,DC=AH。F是BD中点,EF是DHB的中位线。EF=BH。BH=ABAH=ABDC=2。EF=1。故选D。例2. (2011山东济南3分)如图,在ABC中,ACB90,ACBC,分别以AB、BC、CA为一边向ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设AEF、BND、CGM的面积分别为S1、S2、S3,则下列结论正确的是【 】AS1S2S3 BS1S2S3CS1S3S2 DS2S3S1【答案】A。【考点】正方形的性质,直角三角形的性质,全等三角形的判定和性质。【分析】过点D作DQMN交CB的延长线于点P,交MN的延长线于点Q; 过点E作ERGF交CA的延长线于点S,交GF的延长线于点R。 易证CGMCAB(SAS),即S2SABC; 易证PBDCAB(AAS),BP=AC,即S3的底为BN=BC,高为BP=AC,S2SABC;易证SEACAB(AAS),AS=BC,即S1的底为FA=CA,高为AS=BC,S2SABC。S1S2S3SABC。故选A。例3. (2011山东德州8分)如图 AB=AC,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由【答案】解:(1)证明:在ACD与ABE中,A=A,ADC=AEB=90,AB=AC,ACDABE(AAS)。AD=AE。 (2)在RtADO与RtAEO中,OA=OA,AD=AE,ADOAEO(HL)。DAO=EAO。即OA是BAC的平分线。又AB=AC,OABC。【考点】全等三角形的判定和性质【分析】(1)根据全等三角形AAS的判定方法,证明ACDABE,即可得出AD=AE。(2)根据已知条件得出ADOAEO,得出DAO=EAO,即可判断出OA是BAC的平分线,即OABC。五、构造特殊四边形:通过构造平行四边形、矩形、菱形、正方形等特殊四边形,应用它们边、角、对角线、中位线的性质,达到求证(解)的目的。典型例题:例1. (2012贵州遵义3分)如图,矩形ABCD中,E是AD的中点,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为【 】A B C D【答案】B。【考点】翻折变换(折叠问题),矩形的性质和判定,折叠对称的性质,全等三角形的判定和性质,勾股定理。【分析】过点E作EMBC于M,交BF于N。四边形ABCD是矩形,A=ABC=90,AD=BC,EMB=90,四边形ABME是矩形。AE=BM,由折叠的性质得:AE=GE,EGN=A=90,EG=BM。ENG=BNM,ENGBNM(AAS)。NG=NM。E是AD的中点,CM=DE,AE=ED=BM=CM。EMCD,BN:NF=BM:CM。BN=NF。NM=CF=。NG=。BG=AB=CD=CF+DF=3,BN=BGNG=3。BF=2BN=5。故选B。例2. (2012四川德阳3分) 如图,点D是ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又APBE(点P、E在直线AB的同侧),如果,那么PBC的面积与ABC面积之比为【 】A. B. C. D.【答案】D。【考点】平行四边形的判定和性质。【分析】过点P作PHBC交AB于H,连接CH,PF,PE。APBE,四边形APEB是平行四边形。PEAB。,四边形BDEF是平行四边形,EFBD。EFAB。P,E,F共线。设BD=a,PE=AB=4a。PF=PEEF=3a。PHBC,SHBC=SPBC。PFAB,四边形BFPH是平行四边形。BH=PF=3a。SHBC:SABC=BH:AB=3a:4a=3:4,SPBC:SABC=3:4。故选D。例3.(2012江苏常州7分)如图,在四边形ABCD中,ADBC,对角线AC的中点为O,过点O作AC的垂直平分线分别与AD、BC相交于点E、F,连接AF。求证:AE=AF。【答案】证明:连接CE。ADBC,AEO=CFO,EAO=FCO,。 又AO=CO,AEOCFO(AAS)。AE=CF。四边形AECF是平行四边形。又EFAC,平行四边形AECF是菱形。AE=AF。【考点】菱形的判定和性质,平行的性质,全等三角形的判定和性质。【分析】由已知,根据AAS可证得AEOCFO,从而得AE=CF。根据一组对边平行且相等的四边形是平行四边形的判定可得四边形AECF是平行四边形。由EFAC,根据对角线互相垂直的平行四边形是菱形的判定得平行四边形AECF是菱形。根据菱形四边相等的性质和AE=AF。六、基本辅助线:基本辅助线包括连接两点的线段、平行线、垂直线、角平分线等,如连接直角三角形直角顶点与斜边的中点构成斜边上的中线;过三角形一边的中点作另一边的平行线构成三角形的中位线;过三角形一顶点作对边的垂直线构成直角三角形;连接圆上一点和直径的两端点构成直角三角形;等等。典型例题:例2.(2012广东佛山6分)如图,已知AB=DC,DB=AC(1)求证:ABD=DCA,注:证明过程要求给出每一步结论成立的依据(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?【答案】证明:(1)连接AD,在BAD和CDA中, AB=CD (已知),DB=AC(已知), AD=AD(公共边),BADCDA(SSS)。ABD=DCA(全等三角形对应角相等)。(2)作辅助线的意图是构造全等的三角形即两个三角形的公共边。【考点】全等三角形的判定和性质。【分析】(1)连接AD,证明三角形BAD和三角形CAD全等即可得到结论;(2)作辅助线的意图是构造全等的三角形。例3.(2012黑龙江牡丹江3分)如图点D、E在ABC的边BC上,AB=AC,AD=AE请写出图中的全等三角形 (写出一对即可)【答案】ABDACE(答案不唯一)。【考点】开放型,等腰三角形的性质,全等三角形的判定。【分析】如图,过点A作AHBC于点H,则 AB=AC,AD=AE(已知),BH=CH,DH=EH(等腰三角形三线合一)。BHDH=CHEH,即BD=CE。ABDACE(SSS)。还可得ABEACD(SSS)。例4.(2012贵州贵阳3分)如图,在RtABC中,ACB=90,AB的垂直平分线DE交于BC的延长线于F,若F=30,DE=1,则EF的长是【 】A3 B2 C D1【答案】B。【考点】线段垂直平分线的性质,含30度角的直角三角形的性质,等腰三角形的判定。【分析】连接AF,DF是AB的垂直平分线,AF=BF。FDAB,AFD=BFD=30,B=FAB=9030=60。ACB=90,BAC=30,FAC=6030=30。DE=1,AE=2DE=2。FAE=AFD=30,EF=AE=2。故选B。例5.(2012四川宜宾3分)如图,在四边形ABCD中,DCAB,CBAB,AB=AD,CD=AB,点E、F分别为ABAD的中点,则AEF与多边形BCDFE的面积之比为【 】ABCD【答案】C。【考点】直角梯形的性质,三角形的面积,三角形中位线定理。【分析】如图,连接BD,过点F作FGAB交BD于点G,连接EG,CG。 DCAB,CBAB,AB=AD,CD=AB,点E、F分别为ABAD的中点, 根据三角形中位线定理,得AE=BE=AF=DF=DC=FG。 图中的六个三角形面积相等。 AEF与多边形BCDFE的面积之比为。故选C。七、截取和延长变换:在一个平面几何图形内,延长或截取某一条线段,使条件和问题相对集中 ,达到化隐为现的目的,常常使线段所在的三角形与平面内某一三角形成为全等三角形。证明两条线段的和差,80%的情况都要用截长补短法。典型例题:例1.(2012湖北天门、仙桃、潜江、江汉油田3分)如图,ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC若ABC的边长为4,AE=2,则BD的长为【 】A2 B3 C D【答案】A。【考点】全等三角形的判定和性质,等腰三角形的性质,平行线分线段成比例,等边三角形的性质。【分析】延长BC至F点,使得CF=BD,ED=EC,EDB=ECF。EBDEFC(SAS)。B=F。ABC是等边三角形,B=ACB。ACB=F。ACEF。AE=CF=2。BD=AE=CF=2。故选A。例2.(2012山东枣庄8分)已知:如图,在四边形ABCD中,ABC90,CDAD,AD2CD22AB2(1)求证:ABBC;(2)当BEAD于E时,试证明:BEAECD【答案】解:(1)证明:连接AC。ABC90,AB2BC2AC2。CDAD,AD2CD2AC2。AD2CD22AB2,AB2BC22AB2。ABBC。(2)证明:过C作CFBE于F。BEAD,四边形CDEF是矩形。CDEF。ABEBAE90,ABECBF90,BAECBF。又ABBC,BEACFB,BAECBF(AAS)。AEBF。BEBFEF AECD。【考点】勾股定理,矩形的性质,全等三角形的判定和性质。【分析】(1)题目中存在直角,垂直,含线段平方的等式,因此考虑连接AC,构造直角三角形,利用勾股定理证明。(2)可采用“截长”法证明,过点C作CFBE于F,易证CD=EF,只需再证明AE=BF即可,这一点又可通过全等三角形获证.例3.(2012重庆市10分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1=2(1)若CE=1,求BC的长;(2)求证:AM=DF+ME【答案】解:(1)四边形ABCD是菱形,ABCD。1=ACD。 1=2,ACD=2。MC=MD。MECD,CD=2CE。CE=1,CD=2。BC=CD=2。(2)证明:F为边BC的中点,BF=CF=BC。CF=CE。在菱形ABCD中,AC平分BCD,ACB=ACD。在CEM和CFM中,CE=CF,ACB=ACD,CM=CM,CEMCFM(SAS),ME=MF。延长AB交DF于点G,ABCD,G=2。1=2,1=G。AM=MG。在CDF和BGF中,G=2,BFG=CFD,BF=CF,CDFBGF(AAS)。GF=DF。由图形可知,GM=GF+MF,AM=DF+ME。【考点】菱形的性质,平行的性质,等腰三角形的判定和性质,全等三角形的判定和性质。【分析】(1)根据菱形的对边平行可得ABD,再根据两直线平行,内错角相等可得1=ACD,所以ACD=2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度。(2)先利用SAS证明CEM和CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明1=G,根据等角对等边的性质可得AM=GM,再利用AAS证明CDF和BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证。八对称变换:对称变换是几何变换中的基本变换之一,利用轴对称变换作对称点,是我们研究“最短路线”的常用方法。有利于把折线转化到同一直线上研究。典型例题:例1. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 cm【答案】15。【考点】圆柱的展开,矩形的性质,轴对称的性质,三角形三边关系,勾股定理。【分析】如图,圆柱形玻璃杯展开(沿点A竖直剖开)后侧面是一个长18宽12的矩形,作点A关于杯上沿MN的对称点B,连接BC交MN于点P,连接BM,过点C作AB的垂线交剖开线MA于点D。 由轴对称的性质和三角形三边关系知APPC为蚂蚁到达蜂蜜的最短距离,且AP=BP。 由已知和矩形的性质,得DC=9,BD=12。 在RtBCD中,由勾股定理得。 APPC=BPPC=BC=15,即蚂蚁到达蜂蜜的最短距离为15cm。例2.(2012甘肃兰州4分)如图,四边形ABCD中,BAD120,BD90,在B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1.3 恒星的一生说课稿-2023-2024学年华东师大版九年级下册科学
- 综合复习与测试说课稿-2025-2026学年高中数学人教B版必修3-人教B版2004
- 浙教版科学九上2.4 物质的分类 说课稿
- 蔬菜一家亲课件简介
- 2025年部编版新教材语文二年级上册全册单元复习课教案(共8个单元)
- 吉林长春版《心理健康》一年级上 第四课 很高兴认识你 教案
- 第六课 计算机的硬件系统说课稿-2025-2026学年初中信息技术苏教版八年级全一册-苏教版
- 人教版地理七下第八章第四节《澳大利亚》说课稿
- 《第四单元 建立网站 第13课 制作网站 四、使用书签》说课稿教学反思-2023-2024学年初中信息技术人教版七年级上册
- 2025年北京燃气考试题库及答案
- 2025年医卫类病理学技术(中级)专业知识-专业实践能力参考题库含答案解析(5套试卷)
- 2025上海科技馆事业单位工作人员招聘10人笔试备考题库及答案解析
- 八年级语文上册期末考点专题17 新闻阅读(解析版)
- 【初二】【八年级】【道法】2025【秋】上学期开学第一课【统编版】(课件)
- 监狱消防安全应急预案
- 军事类面试题目及答案
- 《工程勘察设计收费标准》(2002年修订本)
- GB 1886.45-2016食品安全国家标准食品添加剂氯化钙
- 26个英文字母(课堂PPT)
- 无脊椎动物类群三腔肠动物门
- 生活离不开规则观课报告
评论
0/150
提交评论