第十二章第3讲合情推理与演绎推理.ppt_第1页
第十二章第3讲合情推理与演绎推理.ppt_第2页
第十二章第3讲合情推理与演绎推理.ppt_第3页
第十二章第3讲合情推理与演绎推理.ppt_第4页
第十二章第3讲合情推理与演绎推理.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第3讲合情推理与演绎推理 考点梳理 1 定义 根据一类事物中部分事物具有某种属性 推断该类事物中 事物都有这种属性的推理 或者由个别事实概括出一般结论的推理 称为归纳推理 简称归纳 2 归纳推理的特点 归纳推理是由部分到整体 由个别到一般的推理 归纳推理的结论不一定为真 归纳的个别情况越多 越具有代表性 推广的一般性命题就越可靠 1 归纳推理 每一个 1 定义 由于两类不同对象具有某些类似的特征 在此基础上 根据一类对象的其他特征 推断另一类对象也具有 的其他特征的推理 称为类比推理 类比推理是两类事物特征之间的推理 2 类比推理的特点 类比推理是由特殊到特殊的推理 类比推理属于合情推理 其结论具有或然性 可能为真 也可能为假 类比的相似性越多 相似的性质与推测的性质之间越相关 类比得出的命题就越可靠 2 类比推理 类似 1 定义 演绎推理是根据已知的事实和正确的结论 按照严格的逻辑法则得到新结论的推理过程 2 演绎推理的特点 演绎推理是由一般到特殊的推理 当前提为真时 结论必然为真 3 演绎推理的主要形式是三段论 其一般模式为 大前提 已知的一般原理 小前提 所研究的特殊情况 结论 根据一般原理 对特殊情况作出的判断 3 演绎推理 一个命题解读本部分内容是新课标内容 高考考查的几率非常大 对归纳推理与类比推理仍会以填空形式考查 主要是由个别情况归纳出一般结论 或运用类比的形式给出某个问题的结论 而演绎推理以解答题出现的可能性较大 因此要求学生具备一定的逻辑推理能力 两个防范 1 合情推理是从已知的结论推测未知的结论 发现与猜想的结论都要经过进一步严格证明 2 演绎推理是由一般到特殊的推理 它常用来证明和推理数学问题 注意推理过程的严密性 书写格式的规范性 助学 微博 1 2012 盐城市第一学期摸底考试 在平面上 若两个正方形的边长的比为1 2 则它们的面积比为1 4 类似地 在空间内 若两个正方体的棱长的比为1 2 则它们的体积比为 解析由正方体的体积之比等于棱长的立方之比可得 答案1 8 考点自测 ab n anbn与 a b n类比 则有 a b n an bn loga xy logax logay与sin 类比 则有sin sin sin a b 2 a2 2ab b2与 a b 2类比 则有 a b 2 a2 2a b b2 其中结论正确的序号是 答案 2 给出下列三个类比结论 解析 指数函数y ax是增函数 是本推理的大前提 它是错误的 因为实数a的取值范围没有确定 所以导致结论是错误的 答案大前提错 4 2010 陕西卷 观察下列等式 13 23 32 13 23 33 62 13 23 33 43 102 根据上述规律 第五个等式为 答案13 23 33 43 53 63 212 5 2011 盐城调研 观察下列几个三角恒等式 tan10 tan20 tan20 tan60 tan60 tan10 1 tan5 tan100 tan100 tan 15 tan 15 tan5 1 tan13 tan35 tan35 tan42 tan42 tan13 1 一般地 若tan tan tan 都有意义 你从这三个恒等式中猜想得到的一个结论为 解析由于三个等式中 角度之间满足10 20 60 90 5 100 15 90 13 35 42 90 于是通过类比可得 答案当 90 时 tan tan tan tan tan tan 1 例1 观察下列等式 考向一归纳推理 可以推测 13 23 33 n3 n N 用含有n的代数式表示 方法总结 所谓归纳 就是由特殊到一般 因此在归纳时就要分析所给条件之间的变化规律 从而得到一般结论 考向二类比推理 方法总结 1 类比是从已经掌握了的事物的属性 推测正在研究的事物的属性 是以旧有的认识为基础 类比出新的结果 2 类比是从一种事物的特殊属性推测另一种事物的特殊属性 3 类比的结果是猜测性的 不一定可靠 但它却有发现的功能 考向三演绎推理 方法总结 演绎推理是从一般到特殊的推理 其一般形式是三段论 应用三段论解决问题时 应当首先明确什么是大前提和小前提 如果前提是显然的 则可以省略 1 判定函数f x 的奇偶性 2 判定函数f x 在R上的单调性 并证明 考向四推理的应用 答案内角平分线 方法总结 归纳推理可以通过多求几项找规律 类比推理 从类比对象划分 主要有等差数列与等比数列的类比 其中等差数列中的加 减 乘 除运算与等比数列中的乘 除 乘方 开方运算对应 平面几何与立体几何的类比 其中平面几何中的点 线 面 长度 面积等 与立体几何中的线 面 体 面积 体积等对应 椭圆与双曲线的类比 其中椭圆与双曲线中有 互余 关系 训练4 2012 常州一中期中 记Sk 1k 2k 3k nk 当k 1 2 3 时 观察下列等式 从近两年新课标高考试题可以看出高考对归纳推理与类比推理的考查主要以填空题的形式出现 难度为中等 常常以不等式 立体几何 解析几何 函数 数列等为载体来考查归纳推理与类比推理 热点突破35高考中归纳推理与类比推理问题的求解策略 审题与转化 第一步 等式左端第一个数的特点是该行的行数 且连续2n 1个数相加 右端为12 32 52 72 规范解答 第二步 由前4个等式可知 第n个等式的左边第一个数为n 且连续2n 1个整数相加 右边为 2n 1 2 故第n个等式为n n 1 n 2 3n 2 2n 1 2 反思与回顾 第三步 对有限的条件进行观察 分析 归纳 整理 提出带有规律性的结论 即猜想 最后检验猜想 审题与转化 第一步 观察等差数列 an 前n项和Sn的特点 反思与回顾 第三步 类比推理是以比较为基础的 它是根据两个或两类不同对象的某些特殊属性的比较 而做出有关另一个特殊属性的结论 是从特殊到特殊的推理 利用这类推理所得到的结论需要进行严格的证明 1 2012 江西卷改编 观察下列各式 a b 1 a2 b2 3 a3 b3 4 a4 b4 7 a5 b5 11 则a10 b10 解析法一由a b 1 a2 b2 3得ab 1 代入后三个等式中符合 则a10 b10 a5 b5 2 2a5b5 123 法二令an an bn 则a1 1 a2 3 a3 4 a4 7 得an 2 an an 1 从而a6 18 a7 29 a8 47 a9 76 a10 123 答案123 高考经典题组训练 2 2010 山东卷改编 观察 x2 2x x4 4x3 cosx sinx 由归纳推理可得 若定义在R上的函数f x 满足f x f x 记g x 为f x 的导函数 则g x 解析归纳类比 得偶函数f x 的导函数g x 是奇函数 从而有g x g x 答案 g x sin213 cos217 sin13 cos17 sin215 cos215 sin15 cos15 sin218 cos212 sin18 cos12 sin2 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论