与圆位置有关的练习题.doc_第1页
与圆位置有关的练习题.doc_第2页
与圆位置有关的练习题.doc_第3页
与圆位置有关的练习题.doc_第4页
与圆位置有关的练习题.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

点直线与圆的位置关系一、选择题1. 如图,的半径为1,是的内接等边三角形,点D,E在圆上,四边形为矩形,这个矩形的面积是ABCDEO第13题图A2 B C D【解析】,知,所以矩形的面积是2. 如图,直线AB与O相切于点A,弦CDAB,E,F为圆上的两点,且CDE=ADF若O的半径为,CD=4,则弦EF的长为()A4B2C5D6考点:切线的性质分析:首先连接OA,并反向延长交CD于点H,连接OC,由直线AB与O相切于点A,弦CDAB,可求得OH的长,然后由勾股定理求得AC的长,又由CDE=ADF,可证得EF=AC,继而求得答案解答:解:连接OA,并反向延长交CD于点H,连接OC,直线AB与O相切于点A,OAAB,弦CDAB,AHCD,CH=CD=4=2,O的半径为,OA=OC=,OH=,AH=OA+OH=+=4,AC=2CDE=ADF,=,=,EF=AC=2故选B点评:此题考查了切线的性质、圆周角定理、垂径定理以及勾股定理等知识此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用3已知O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:若d5,则m=0;若d=5,则m=1;若1d5,则m=3;若d=1,则m=2;若d1,则m=4其中正确命题的个数是( )A1B2C4D5 考点:直线与圆的位置关系;命题与定理分析:根据直线与圆的位置关系和直线与圆的交点个数结合答案分析即可得到答案解答:解:若d5时,直线与圆相离,则m=0,正确;若d=5时,直线与圆相切,则m=1,故正确;若1d5,则m=3,正确;若d=1时,直线与圆相交,则m=2正确;若d1时,直线与圆相交,则m=2,故错误故选C点评:考查了直线与圆的位置关系,解题的关键是了解直线与圆的位置关系与d与r的数量关系4如图,RtABC中,ACB=90,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A2.5B1.6C1.5D1考点:切线的性质;相似三角形的判定与性质分析:连接OD、OE,先设AD=x,再证明四边形ODCE是矩形,可得出OD=CE,OE=CD,从而得出CD=CE=4x,BE=6(4x),可证明AODOBE,再由比例式得出AD的长即可解答:解:连接OD、OE,设AD=x,半圆分别与AC、BC相切,CDO=CEO=90,C=90,四边形ODCE是矩形,OD=CE,OE=CD,CD=CE=4x,BE=6(4x)=x+2,AOD+A=90,AOD+BOE=90,A=BOE,AODOBE,=,=,解得x=1.6,故选B点评:本题考查了切线的性质相似三角形的性质与判定,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形,证明三角形相似解决有关问题5.已知O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与O的位置关系是()A相交B相切C相离D无法判断考点:直线与圆的位置关系分析:设圆的半径为r,点O到直线l的距离为d,若dr,则直线与圆相交;若d=r,则直线于圆相切;若dr,则直线与圆相离,从而得出答案解答:解:设圆的半径为r,点O到直线l的距离为d,d=5,r=6,dr,直线l与圆相交故选A点评:本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定6. 如图,AB是O的直径,CD是O的切线,切点为D,CD与AB的延长线交于点C,A=30,给出下面3个结论:AD=CD;BD=BC;AB=2BC,其中正确结论的个数是()A3B2C1D0考点:切线的性质分析:连接OD,CD是O的切线,可得CDOD,由A=30,可以得出ABD=60,ODB是等边三角形,C=BDC=30,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论成立解答:解:如图,连接OD,CD是O的切线,CDOD,ODC=90,又A=30,ABD=60,OBD是等边三角形,DOB=ABD=60,AB=2OB=2OD=2BDC=BDC=30,BD=BC,成立;AB=2BC,成立;A=C,DA=DC,成立;综上所述,均成立,故答案选:A点评:本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键7.如图,AB是O的直径,AC是O的切线,连接OC交O于点D,连接BD,C=40则ABD的度数是()第1题图A30B25C20D15考点:切线的性质分析:根据切线的性质求出OAC,求出AOC,根据等腰三角形性质求出B=BDO,根据三角形外角性质求出即可解答:解:AC是O的切线,OAC=90,C=40,AOC=50,OB=OD,ABD=BDO,ABD+BDO=AOC,ABD=25,故选B点评:本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出AOC的度数,题目比较好,难度适中8. 如图,圆O的直径CD=10cm,且ABCD,垂足为P,AB=8cm,则sinOAP=第2题图考点:垂径定理;勾股定理;锐角三角函数的定义专题:计算题分析:根据垂径定理由ABCD得到AP=AB=4cm,再在RtOAP中,利用勾股定理计算出OP=3,然后根据正弦的定义求解解答:解:ABCD,AP=BP=AB=8=4cm,在RtOAP中,OA=CD=5,OP=3,sinOAP=故答案为点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理和锐角三角函数9如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,O2的半径为1,O1O2AB于点P,O1O2=6若O2绕点P按顺时针方向旋转360,在旋转过程中,O2与矩形的边只有一个公共点的情况一共出现()A3次B4次C5次D6次考点:直线与圆的位置关系分析:根据题意作出图形,直接写出答案即可解答:解:如图:,O2与矩形的边只有一个公共点的情况一共出现4次,故选B点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径二、填空题1. 如图,直线l与半径为4的O相切于点A,P是O上的一个动点(不与点A重合),过点P作PBl,垂足为B,连接PA设PA=x,PB=y,则(xy)的最大值是2考点:切线的性质分析:作直径AC,连接CP,得出APCPBA,利用=,得出y=x2,所以xy=xx2=x2+x=(x4)2+2,当x=4时,xy有最大值是2解答:解:如图,作直径AC,连接CP,CPA=90,AB是切线,CAAB,PBl,ACPB,CAP=APB,APCPBA,=,PA=x,PB=y,半径为4=,y=x2,xy=xx2=x2+x=(x4)2+2,当x=4时,xy有最大值是2,故答案为:2点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键2如图,已知AB为O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若ABC=30,则AM= 考点:切线的性质3. (2014山东枣庄,第23题8分)如图,A为O外一点,AB切O于点B,AO交O于C,CDOB于E,交O于点D,连接OD若AB=12,AC=8(1)求OD的长;(2)求CD的长 考点:切线的性质专题:计算题分析:(1)设O的半径为R,根据切线定理得OBAB,则在RtABO中,利用勾股定理得到R2+122=(R+8)2,解得R=5,即OD的长为5;(2)根据垂径定理由CDOB得DE=CE,再证明OECOBA,利用相似比可计算出CE=,所以CD=2CE=解答:解:(1)设O的半径为R,AB切O于点B,OBAB,在RtABO中,OB=R,AO=OC+AC=R+8,AB=12,OB2+AB2=OA2,R2+122=(R+8)2,解得R=5,OD的长为5;(2)CDOB,DE=CE,而OBAB,CEAB,OECOBA,=,即=,CE=,CD=2CE=点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了勾股定理、垂径定理和相似三角形的判定与性质4.如图,在梯形ABCD中,ADBC,B=900,以AB为直径作O,恰与另一腰CD相切于点E,连接OD、OC、BE(1)求证:ODBE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长考点:全等三角形、直角三角形、勾股定理;直线与圆的位置关系分析:(1)连接OE, 证明RtOADRtOED可得AOD=ABE,从而ODBE;(2)证明COD是直角三角形,根据梯形ABCD的面积是48求出xy=48,结合x+y=14可求出x2+y2的值,从而可得CD的长解答:(1)证明:连接OE,CD是O的切线, OECD,在RtOAD和RtOED中,OA=OE, OD=OD,RtOADcRtOED, AOD=EOD=AOE,在O中,ABE=AOE, AOD=ABE, ODBE (2)同理可证:RtCOERtCOBCOE=COB=BOE,DOE+COE=900,COD是直角三角形, SDEO=SDAO, SCOE=SCOB,S梯形ABCD =2(SDOE+SCOE)=2SCOD=OCOD=48,即xy=48, 又x+y= 14,x2 +y2=(x+y)22xy=142248=100,在RtCOD中,即CD的长为10 点评:本题主要考查的是三角形全等、直角三角形、勾股定理;、直线与圆的位置关系.5.(2014江西抚州,第22题,9分)如图,在平面直角坐标系中,经过轴上一点,与y轴分别交于、两点,连接并延长分别交、轴于点、,连接并延长交y轴于点,若点的坐标为(0 ,1),点的坐标为(6 ,1). 求证: 判断与轴的位置关系,并说明理由. 求直线的解析式.专题:计算题分析:连接OM,OC,由OB=OC,且ABC的度数求出BCO的度数,利用外角性质求出AOC度数,利用切线长定理得到MA=AC,利用HL得到三角形AOM与三角形COM全等,利用全等三角形对应角相等得到OM为角平分线,求出AOM为30,在直角三角形AOM值,利用锐角三角函数定义即可求出AM的长解答:解:连接OM,OC,OB=OC,且ABC=30,BCO=ABC=30,AOC为BOC的外角,AOC=2ABC=60,MA,MC分别为圆O的切线,MA=MC,且MAO=MCO=90,在RtAOM和RtCOM中,RtAOMRtCOM(HL),AOM=COM=AOC=30,在RtAOM中,OA=AB=1,AOM=30,tan30=,即=,解得:AM=故答案为:点评:此题考查了切线的性质,锐角三角函数定义,外角性质,以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键3. 一走廊拐角的横截面积如图,已知ABBC,ABDE,BCFG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且EOF=90,DE、FG分别与O相切于E、F两点若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与O相切于点P,P是的中点,则木棒MN的长度为(42)m考点:切线的性质.专题:应用题分析:连接OB,延长OF,OE分别交BC于H,交AB于G,证得四边形BGOH是正方形,然后证得OB经过点P,根据勾股定理切点OB的长,因为半径OP=1,所以BP=21,然后求得BPMBPN得出P是MN的中点,最后根据直角三角形斜边上的中线等于斜边的一半即可求得解答:解:连接OB,延长OF,OE分别交BC于H,交AB于G,DE、FG分别与O相切于E、F两点,OEED,OFFG,ABDE,BCFG,OGAB,OHBC,EOF=90,四边形BGOH是矩形,两组平行墙壁间的走廊宽度都是1m,O半径为1m,OG=OH=2,矩形BGOH是正方形,BOG=BOH=45,P是的中点,OB经过P点,在正方形BGOH中,边长=2,OB=2,OP=1,BP=21,p是MN与O的切点,OBMN,OB是正方形BGOH的对角线,OBG=OBH=45,在BPM与BPN中BPMBPN(ASA)MP=NP,MN=2BP,BP=21,MN=2(21)=42,点评:本题考查了圆的切线的性质,正方形的判定和性质,全等三角形的判定和性质以及勾股定理的应用,O、P、B三点共线是本题的关键4如图,AB是O的直径,点C在AB的延长线上,CD切O于点D,连接AD若A=25,则C=40度考点:切线的性质;圆周角定理专题:计算题分析:连接OD,由CD为圆O的切线,利用切线的性质得到OD垂直于CD,根据OA=OD,利用等边对等角得到A=ODA,求出ODA的度数,再由COD为AOD外角,求出COD度数,即可确定出C的度数解答:解:连接OD,CD与圆O相切,ODDC,OA=OD,A=ODA=25,COD为AOD的外角,COD=50,C=40故答案为:40点评:此题考查了切线的性质,等腰三角形的性质,以及外角性质,熟练掌握切线的性质是解本题的关键三解答题1. (2014山东枣庄,第23题8分)如图,A为O外一点,AB切O于点B,AO交O于C,CDOB于E,交O于点D,连接OD若AB=12,AC=8(1)求OD的长;(2)求CD的长 考点:切线的性质专题:计算题分析:(1)设O的半径为R,根据切线定理得OBAB,则在RtABO中,利用勾股定理得到R2+122=(R+8)2,解得R=5,即OD的长为5;(2)根据垂径定理由CDOB得DE=CE,再证明OECOBA,利用相似比可计算出CE=,所以CD=2CE=解答:解:(1)设O的半径为R,AB切O于点B,OBAB,在RtABO中,OB=R,AO=OC+AC=R+8,AB=12,OB2+AB2=OA2,R2+122=(R+8)2,解得R=5,OD的长为5;(2)CDOB,DE=CE,而OBAB,CEAB,OECOBA,=,即=,CE=,CD=2CE=点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了勾股定理、垂径定理和相似三角形的判定与性质2. 如图,在梯形ABCD中,ADBC,B=900,以AB为直径作O,恰与另一腰

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论