




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形的内切圆教学设计舒城县汤池中学 李云教材分析(1)知识结构(2)重点、难点分析重点:三角形内切圆的概念及内心的性质因为它是三角形的重要概念之一难点:难点是“接”与“切”的含义,学生容易混淆;画三角形内切圆,学生不易画好教学建议本节内容需要一个课时(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学教学目标:1、使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;3、激发学生动手、动脑主动参与课堂教学活动教学重点:三角形内切圆的作法和三角形的内心与性质教学难点:三角形内切圆的作法和三角形的内心与性质教学活动设计(一)提出问题1、提出问题:如图,你能否在ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?2、分析、研究问题:让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义3、解决问题:例1 作圆,使它和已知三角形的各边都相切引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法提出以下几个问题进行讨论:作圆的关键是什么?假设I是所求作的圆,I和三角形三边都相切,圆心I应满足什么条件?这样的点I应在什么位置?圆心I确定后半径如何找A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个(二)类比联想,学习新知识1、概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形2、类比:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形的内部内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA、OB、OC分别平分BAC、ABC、ACB;(3)内心在三角形内部3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形4、概念理解:引导学生理解三角形的内切圆及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解使学生弄清“内”与“外”、“接”与“切”的含义“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”(三)应用与反思例2如图,在ABC中,ABC50,ACB75,点O是三角形的内心 求BOC的度数分析:要求BOC的度数,只要求出OBC和0CB的度数之和就可,即求l十3的度数因为O是ABC的内心,所以OB和OC分别为ABC和BCA的平分线,于是有1十3(ABC十ACB),再由三角形的内角和定理易求出BOC的度数解:(引导学生分析,写出解题过程)例3如图,ABC中,E是内心,A的平分线和ABC的外接圆相交于点D求证:DEDB分析:从条件想,E是内心,则E在A的平分线上,同时也在ABC的平分线上,考虑连结BE,得出34从结论想,要证DEDB,只要证明BDE为等腰三角形,同样考虑到连结BE于是得到下述法证明:连结BEE是ABC的内心又1=21=21+3=4+5BED=EBDDE=DB练习分析作出已知的锐角三角形、直角三角形、钝角三角形的内切圆,并说明三角形的内心是否都在三角形内(四)小结1教师先向学生提出问题:这节课学习了哪些概念?怎样作已知三角形的内切圆?学习时互该注意哪些问题?2学生回答的基础上,归纳总结:(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用(五)作业教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题探究活动问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,B=90(1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);(2)计算出最大的圆形纸片的半径(要求精确值)提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年山东省枣庄市山亭区人教PEP版(2012)五年级下学期期中英语试卷(含答案)
- 2025年教师招聘之《幼儿教师招聘》题库必背100题含答案详解【满分必刷】
- 2025年教师招聘之《幼儿教师招聘》基础试题库含答案详解【a卷】
- 教师招聘之《幼儿教师招聘》及答案详解(名校卷)
- 餐饮营销活动的策划方案模板
- 我发现的奥秘350字(7篇)
- 安全知识培训及演练课件
- 教师招聘之《幼儿教师招聘》强化训练高能及参考答案详解(培优a卷)
- 新质生产力融入思政课的路径
- 教师招聘之《幼儿教师招聘》综合练习及完整答案详解一套
- 供热客服人员培训
- 酒店工程节能降耗培训
- 广东省安装工程综合定额(2018)Excel版
- 老年患者麻醉专家共识
- 棋牌室员工管理制度
- 《中华人民共和国慈善法》培训解读课件
- CJ/T 249-2007城镇污水处理厂污泥处置混合填埋泥质
- 2025年版简易房屋租赁合同模板
- 医疗机构从业人员行为规范培训
- 2025年4月自考00908网络营销与策划试题及答案
- 医疗背景下的园艺景观规划设计方法
评论
0/150
提交评论