




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时等差数列的前n项和1.了解等差数列前n项和公式的推导过程.(难点),2.掌握等差数列前n项和公式及其应用.(重点),3.能灵活应用等差数列前n项和的性质解题.(难点、易错点)基础初探教材整理等差数列的前n项和阅读教材P39第二自然段P39例1,完成下列问题.1.数列的前n项和的概念一般地,称a1a2an为数列an的前n项和,用Sn表示,即Sna1a2an.2.等差数列的前n项和公式已知量首项、末项与项数首项、公差与项数求和公式SnSnna1d1.设Sn是等差数列an的前n项和,已知a23,a611,则S7等于()A.13B.35C.49D.63【解析】a2a6a1a714,S749.【答案】C2.等差数列an中,a11,d1,则Sn_.【解析】因为a11,d1,所以Snn1.【答案】3.在等差数列an中,S10120,那么a1a10_.【解析】由S10120,得a1a1024.【答案】244.已知数列an的前n项和Snn22n,则数列an的通项公式an_.【解析】当n1时,a1S13.当n2时,anSnSn1n22n(n1)22(n1)2n1.因为n1时,a13,也满足an2n1,所以an2n1. 【答案】2n1小组合作型有关等差数列的前n项和的基本运算已知等差数列an中,(1)a1,S420,求S6;(2)a1,d,Sn15,求n及an;(3)a11,an512,Sn1 022,求d.【精彩点拨】利用等差数列求和公式的两种形式求解.【自主解答】(1)S44a1d4a16d26d20,d3.故S66a1d6a115d315d48.(2)Snn15,整理得n27n600,解得n12或n5(舍去),a12(121)4.(3)由Sn1 022,解得n4.又由ana1(n1)d,即5121(41)d,解得d171.a1,n,d为等差数列的三个基本量,an和Sn都可以用这三个基本量来表示,五个量a1,n,d,an,Sn中可知三求二.一般是通过通项公式和前n项和公式联立方程(组)求解,这种方法是解决数列问题的基本方法.在具体求解过程中,应注意已知与未知的联系及整体思想的运用.再练一题1.已知a610,S55,求a8和S10.【解】解得a15,d3.a8a62d102316,S1010a1d10(5)59385.等差数列前n项和公式的实际应用某抗洪指挥部接到预报,24小时后有一洪峰到达,为确保安全,指挥部决定在洪峰到来之前临时筑一道堤坝作为第二道防线.经计算,除现有的参战军民连续奋战外,还需调用20台同型号翻斗车,平均每辆车工作24小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用,每隔20分钟能有一辆翻斗车到达,一共可调集25辆,那么在24小时内能否构筑成第二道防线?【精彩点拨】因为每隔20分钟到达一辆车,所以每辆车的工作量构成一个等差数列.工作量的总和若大于欲完成的工作量,则说明24小时内可完成第二道防线工程.【自主解答】从第一辆车投入工作算起各车工作时间(单位:小时)依次设为a1,a2,a25.由题意可知,此数列为等差数列,且a124,公差d.25辆翻斗车完成的工作量为:a1a2a2525242512500,而需要完成的工作量为2420480.500480,在24小时内能构筑成第二道防线.1.本题属于与等差数列前n项和有关的应用题,其关键在于构造合适的等差数列.2.遇到与正整数有关的应用题时,可以考虑与数列知识联系,建立数列模型,具体解决要注意以下两点:(1)抓住实际问题的特征,明确是什么类型的数列模型.(2)深入分析题意,确定是求通项公式an,或是求前n项和Sn,还是求项数n.再练一题2.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,此最小值为_米. 【导学号:18082026】【解析】假设20位同学是1号到20号依次排列,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,则树苗需放在第10或第11号树坑旁,此时两侧的同学所走的路程分别组成以20为首项,20为公差的等差数列,故所有同学往返的总路程为S920201020202 000(米).【答案】2 000探究共研型等差数列的前n项和公式推导探究1如图222,某仓库堆放的一堆钢管,最上面的一层有4根钢管,下面的每一层都比上一层多一根,最下面的一层有9根.假设在这堆钢管旁边再倒放上同样一堆钢管,如图所示,则这样共有多少钢管?原来有多少根钢管?图222【提示】在原来放置的钢管中,从最上面一层开始,往下每一层的钢管数分别记为a1,a2,a6,则数列an构成一个以a14为首项,以d1为公差的等差数列,设此时钢管总数为S6,现再倒放上同样一堆钢管,则这堆钢管每层有a1a6a2a5a3a4a6a113(根),此时钢管总数为2S6(a1a6)613678(根),原来钢管总数为S6639(根).探究2通过探究1,你能推导出等差数列an的求和公式吗?【提示】Sna1a2an,把数列an各项顺序倒过来相加得Snanan1a2a1,得2Sn(a1an)(a2an1)(ana1)n(a1an),则Sn.探究3你能用a1,d,n表示探究2中的公式吗?该结果与Sn有什么区别与联系.【提示】Sna1n,即Sna1n.该公式是由探究2中的公式推导得出,都是用来求等差数列的前n项和,在求解时都可以“知三求一”,求Sn时,都需知a1,n,不同在于前者还需知an,后者还需知d.(1)已知等差数列an中,若a1 0091,求S2 017;(2)已知an,bn均为等差数列,其前n项和分别为Sn,Tn,且,求.【精彩点拨】由等差数列的前n项和公式及通项公式列方程组求解,或结合等差数列的性质求解.【自主解答】(1)法一:a1009a11008d1,S20172017a1d2 017(a11 008d)2017.法二:a1009,S20172 0172017a10092017.(2)法一:.法二:,设Sn2n22n,Tnn23n,a5S5S420,b5T5T412,.1.若an是等差数列,则Snnna中(a中为a1与an的等差中项).2.若an,bn均为等差数列,其前n项和分别为Sn,Tn,则.再练一题3.在等差数列an中.已知a3a1540,求S17.【解】法一:a1a17a3a15,S17340.法二:a3a152a116d40,a18d20,S1717a1d17(a18d)1720340.法三:a3a152a940,a920,S1717a9340.1.等差数列an的前n项和为Sn,若a12,S312,则a6等于()A.8 B.10 C.12 D.14【解析】由题意知a12,由S33a1d12,解得d2,所以a6a15d25212,故选C.【答案】C2.设Sn是等差数列an的前n项和,若a1a3a53,则S5()A.5 B.7 C.9 D.11【解析】法一:a1a52a3,a1a3a53a33,a31,S55a35,故选A.法二:a1a3a5a1(a12d)(a14d)3a16d3,a12d1,S55a1d5(a12d)5,故选A.【答案】A3.在一个等差数列中,已知a1010,则S19_.【解析】S1919a10190.【答案】1904.记等差数列前n项和为Sn,若S24,S420,则该数列的公差d_. 【导学号:180820
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新品推广合同
- 工程私人协议合同范本
- 建材购货合同范本简易
- 小产权借款合同范本
- 社区医院劳务合同范本
- 潍坊劳务用工合同范本
- 网页制作定制合同范本
- 影楼员工入股合同范本
- 统借统还借款合同范本
- 矿山资质转让合同范本
- 苏豪控股集团招聘笔试题库2025
- 山西省太原市某校2024-2025学年高一下学期3月月考数学试题
- 土地复垦方案范本
- T-CRHA 089-2024 成人床旁心电监测护理规程
- 黄豆苷元药理作用研究-深度研究
- 2025年全国企业员工全面质量管理知识竞赛题库(试题及答案)
- 2025年电信人工智能学习考试题库(含答案)
- 机器人焊接技术与应用考核试卷
- CNAS-CL01:2018 检测和校准实验室能力认可准则
- 中考名著《唐诗三百首》习题集
- 危险性较大的分部分项工程安全监理实施细则
评论
0/150
提交评论