




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学案20两角和与差的正弦、余弦和正切公式导学目标: 1.会用向量数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.4.熟悉公式的正用、逆用、变形应用自主梳理1(1)两角和与差的余弦cos()_,cos()_.(2)两角和与差的正弦sin()_,sin()_.(3)两角和与差的正切tan()_,tan()_.(,均不等于k,kZ)其变形为:tan tan tan()(1tan tan ),tan tan tan()(1tan tan )2辅助角公式asin bcos sin(),其中角称为辅助角自我检测1cos 43cos 77sin 43cos 167的值为_2已知tan()3,tan()5,则tan 2_.3cossin_.4(1tan 17)(1tan 18)(1tan 27)(1tan 28)的值是_5已知cossin ,则sin的值是_探究点一给角求值问题(三角函数式的化简、求值)例1求值:(1)2sin 50sin 10(1tan 10);(2)sin(75)cos(45)cos(15)变式迁移1求值:(1);(2)tan()tan()tan()tan()探究点二给值求值问题(已知某角的三角函数值,求另一角的三角函数值)例2已知0,cos,sin,求sin()的值变式迁移2(2010广州高三二模)已知tan2,tan .(1)求tan 的值;(2)求的值探究点三给值求角问题(已知某角的三角函数值,求另一角的值)例3已知0,tan ,cos().(1)求sin 的值;(2)求的值变式迁移3若sin A,sin B,且A、B均为钝角,求AB的值转化与化归思想例(14分)已知向量a(cos ,sin ),b(cos ,sin ),|ab|.(1)求cos()的值;(2)若0,且sin ,求sin 的值【答题模板】解(1)|ab|,a22abb2.2分又a(cos ,sin ),b(cos ,sin ),a2b21,abcos cos sin sin cos(),4分故cos().7分(2)0,0.cos(),sin().9分又sin ,0,cos .11分故sin sin()sin()cos cos()sin .14分【突破思维障碍】本题是三角函数问题与向量的综合题,唯一一个等式条件|ab|,必须从这个等式出发,利用向量知识化简再结合两角差的余弦公式可求第(1)问,在第(2)问中需要把未知角向已知角转化再利用角的范围来求,即将变为().本节主要应用转化与化归思想,即异角化同角未知角向已知角转化,非特殊角向特殊角转化【易错点剖析】|ab|平方逆用及两角差的余弦公式是易错点,把未知角转化成已知角并利用角的范围确定三角函数符号也是易错点1转化思想是实施三角变换的主导思想,变换包括:函数名称变换,角的变换,“1”的变换,和积变换2变换则必须熟悉公式分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件3恒等变形前需已知式中角的差异,函数名称的差异,运算结构的差异,寻求联系,实现转化4基本技巧:切割化弦,异名化同,异角化同或尽量减少名称、角数(满分:90分)一、填空题(每小题6分,共48分)1已知a(,0),sin ,则tan()_.2(2011盐城模拟)已知cos(),则sin2()cos()的值是_3(2010东北育才中学一模)已知、均为锐角,且tan ,则tan()_.4函数ysin(x)cos(x)的最大值为_5求值:_.6在ABC中,3sin A4cos B6,4sin B3cos A1,则C的大小为_7函数f(x)asin(x)3sin(x)是偶函数,则a_.8已知tan 、tan 是方程x23x40的两根,且、,则tan()_,的值为_二、解答题(共42分)9(14分)(1)已知,且sin(),cos .求sin ;(2)已知,(0,),且tan(),tan ,求2的值10(14分)(2010四川)(1)证明两角和的余弦公式C():cos()cos cos sin sin ;由C()推导两角和的正弦公式S():sin()sin cos cos sin .(2)已知ABC的面积S,3,且cos B,求cos C.11(14分)(2010济南高三三模)设函数f(x)ab,其中向量a(2cos x,1),b(cos x,sin 2x),xR.(1)若函数f(x)1,且x,求x;(2)求函数yf(x)的单调增区间,并在给出的坐标系中画出yf(x)在区间0,上的图象答案 自主梳理1(1)cos cos sin sin cos cos sin sin (2)sin cos cos sin sin cos cos sin (3)自我检测12.3.4.45.课堂活动区例1解题导引在三角函数求值的问题中,要注意“三看”口诀,即(1)看角,把角尽量向特殊角或可计算的角转化,合理拆角,化异为同;(2)看名称,把算式尽量化成同一名称或相近的名称,例如把所有的切都转化为弦,或把所有的弦都转化为切;(3)看式子,看式子是否满足三角函数的公式如果满足则直接使用,如果不满足需转化一下角或转换一下名称,就可以使用解(1)原式sin 80sin 80cos 10cos 102cos 10cos 102sin 602.(2)原式sin(45)30cos(45)cos(45)30sin(45)cos(45)cos(45)cos(45)sin(45)0.变式迁移1解(1)原式.(2)原式tan()()1tan()tan()tan()tan().例2解题导引对于给值求值问题,即由给出的某些角的三角函数的值,求另外一些角的三角函数值,关键在于“变角”,使“所求角”变为“已知角”,若角所在象限没有确定,则应分类讨论应注意公式的灵活运用,掌握其结构特征,还要学会拆角、拼角等技巧解cossin,0,.cos,cos.sin()sinsincoscossin.sin().变式迁移2解(1)由tan2,得2,即1tan 22tan ,tan .(2)tan().例3解题导引(1)通过求角的某种三角函数值来求角,在选取函数时,遵循以下原则:已知正切函数值,选正切函数;已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,),选余弦较好;若角的范围为,选正弦较好(2)解这类问题的一般步骤:求角的某一个三角函数值;确定角的范围;根据角的范围写出所求的角解(1)tan ,sin sin2sin cos .(2)0,sin ,cos .又0,0.由cos(),得sin().sin sin()sin()cos cos()sin .由得.(或求cos ,得)变式迁移3解A、B均为钝角且sin A,sin B,cos A,cos B.cos(AB)cos Acos Bsin Asin B.又A,B,AB2.由,知AB.课后练习区12.3.14.252解析原式tan 15tan(4530)2.6.解析两式平方相加得91624sin(AB)37,sin(AB)sin C,所以C或.如果C,则0A,3cos A1与4sin B3cos A1矛盾,故C.73解析f(x)asin(x)3sin(x)asin xacos x(sin xcos x)(a3)sin x(a3)cos x,因为是偶函数,则f(x)f(x),代入得:(a3)sin x0,所以a3.8.解析tan(),又、,、,0,.9解(1),cos ,sin .(2分)又0,又sin(),cos() ,(5分)sin sin()sin()cos cos()sin .(7分)(2)tan tan(),(10分)tan(2)tan()1.(12分),(0,),tan 1,tan 0,0,20,A,cos A3sin A,(10分)又sin2Acos2A1,sin A,cos A,由cos B,得sin B.cos(AB)cos Acos Bsin Asin B.(12分)故cos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年黔西南州公务员考试行测真题及答案详解(名师系列)
- 2025年农业灌溉用水高效利用与农业灌溉制度优化报告
- 2025年北京市公务员考试行测试卷历年真题及1套完整答案详解
- 2024年连江县公务员考试行测试卷历年真题附答案详解(考试直接用)
- 细胞周期药物靶点-洞察及研究
- 一年级数学计算题专项练习汇编
- 糖蛋白M6B调控小鼠肝细胞糖原生物合成的作用及机制研究
- 光纤智能插入式呼吸管的研究与制备
- 基于深度学习的高含水油藏分层注水智能优化研究
- BiVO4基光催化剂的制备及其光催化降解四环素的研究
- 云南省昆明市官渡区2023-2024学年五年级下学期7月期末道德与法治试题
- GB/T 43988-2024滑板课程学生运动能力测评规范
- GB/T 44092-2024体育公园配置要求
- DL-T1069-2016架空输电线路导地线补修导则
- 2024年陕西新华出版传媒集团有限责任公司招聘笔试冲刺题(带答案解析)
- 江苏开放大学本科行政管理专业060193国家公务员制度期末试卷
- 农村排灌用电安全管理
- 重庆开放大学《工具书与文献检索》形考测验1-4答案
- 纺织非遗:让世界读懂中国之美智慧树知到期末考试答案2024年
- 结节性红斑的护理措施
- 应急处突知识培训课件
评论
0/150
提交评论