




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
姓名 学号 学院 专业 座位号 ( 密 封 线 内 不 答 题 )密封线线_ _ 诚信应考,考试作弊将带来严重后果! 华南理工大学期末考试概率论与数理统计试卷(A)注意事项:1. 考前请将密封线内填写清楚; 2. 允许使用计算器,所有答案请直接答在试卷上; 3考试形式:闭卷; 4. 本试卷共八大题,满分100分,考试时间120分钟。题 号一二三四五六七八总分得 分评卷人可能用到的表值:一(本大题10分)一个盒子中装有4个白球、6个红球,现投掷一枚均匀的骰子,骰子投掷出几点就从盒中无放回地取几个球。试求:(1)所取的全是白球的概率;(2)如果已知取出的都是白球,那么骰子所掷的点数恰为3的概率是多少?二(本大题10分) 设二维离散型随机变量的分布列为 且 (1)求、b; (2)求出X的边缘分布列; (3)写出X的分布函数。三(本大题10分)。 设X服从(0,1)上均匀分布, (1)求的密度函数; (2),求一个,使得。四(本大题10分)。一袋中有10只白球、15只黑球、20只红球。球除颜色外其他均相同。从袋中任取一球,放回后同时再放进5只与该球同色的球,如此进行下去。求(1)第2次取到红球的概率;(2)在第2次取到红球的条件下,第1次也是取到红球的概率;(3)在第k次取到红球的条件下,第1次也是取到红球的概率。五(本大题15分)。设()的联合密度函数是:, (1)说明A=6/7; (2)求X的密度函数; (3)求P(XY)。六(本大题15分)。 设(X,Y)的密度函数为求 (1)系数A;(2)EX,EY,DX,DY;(3)X,Y的协方差与相关系数。七(本大题15分)。假设一条生产线生产的产品合格率是0.8。要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?试用如下两种指定的方法求解: (1)使用契比雪夫不等式。 (2)使用中心极限定理。八(本大题15分)。电视台有一节目“幸运观众有奖答题”:第k题答对奖励k1000元。答错则得-(k-1)1000元,并带上余下的钱退出;答对后继续答题。假设最多只可答5题。已知某观众答对第一题的概率为0.8,以后题的难度成倍增加,即答对题的概率为答对前面一题概率的一半。 (1)求该观众答对题数的期望值; (2)求该观众得到奖励金额的期望值; (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外租房电梯维修合同协议
- 医院科室合作协议书合同
- 会场会务服务合同协议书
- 劳动合同试用期离职协议
- 中间人合作合同协议范本
- 人力资源置换协议合同书
- 劳动合同的商业保密协议
- 中石油合作协议合同范本
- 合同未签订前的服务协议
- 合伙分散合同协议书范本
- 主管岗位培训计划方案
- 2024年医院口腔科实习生带教计划
- (正式版)实习岗位-OFFER通知书
- 教师的挑战:宁静的课堂革命
- 全套电子课件:基础会计(第五版)
- 作文格子稿纸800字-A4打印版
- 大象版五年级上册《科学》全一册全部课件(共25课时)
- 大学美术鉴赏(第2版)PPT完整全套教学课件
- 2023年放射科护理质量与安全管理计划汇编6篇
- 北师大版一年级数学上册全册教案及教学反思
- 简易施工方案模板范本
评论
0/150
提交评论