




已阅读5页,还剩97页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.1.1 相交线个性化设计教学目标1、经历探究对顶角、邻补角的位置关系的过程;2、了解对顶角、邻补角的概念;3、知道“对顶角相等”并会运用它进行简单的说理。重点难点对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”说理是难点。教学过程一、情景导入投影1下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线。“米”字形中的线段都相交,“米”字形中间的线段都平行,等等。相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用。我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备。二、邻补角和对顶角投影2下面是一把剪刀,你能联想到什么几何图形? 1 BB23 BB4OB BBAC BBD BB BB两条直线相交,如图。 BB上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:1和2、1和3、1和4、2和3、2和4、3和4。量一量各个角的度数,你能将上面的六对角分类吗?可分为两类:1和2、1和4、2和3、3和4为一类,它们的和是1800;1和3、2和4为二类,它们相等。第一类角有什么共同的特征?一条边公共,另一条边互为反向延长线。具有这种关系的两个角,互为邻补角。讨论:邻补角与补角有什么关系?邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关。第二类角有什么共同的特征?有公共的顶点,两边互为反向延长线。具有这种位置关系的角,互为对顶角。思考:投影3下列图形中,1和2是对顶角的是 12121212 A B C D注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个。三、对顶角的性质在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。在这过程中,两个把手之间的角与剪刀刃之间的角有什么关系?为了回答这个问题,我们先来研究下面的问题。如图,直线AB和直线CD相交于点O,1和3有什么关系?为什么? 1 BB23 BB4OB BBAC BBD BB1和3相等。121800 ,231800 、13(同角的补角相等)同理2和4相等。这就是说:对顶角相等。你能利用这个性质回答上面的问题吗?因为剪刀的构造可以看成两条相交的直线,所以两个把手之间的角与剪刀刃之间的角互为对顶角,由于对顶角相等,因此,两个把手之间的角与剪刀刃之间的角始终相等。四、例题投影4如图,直线a、b相交,1400,求2、3、4的度数。 1 BB23 BB4OB BBAC BBD BB 分析:1和2有什么关系?1和3有什么关系?2和4有什么关系?解:121800,21800118004001400.31400,421400.五、课堂练习投影51、一个角的对顶角有 个,邻补角最多有 个,而补角则可以有 个。2、下图中直线AB、CD相交于O,BOC的对顶角是 ,邻补角是 12ACBDEO 3、课本5面练习。4、如2题图,已知AOC=80,1=30,求2的度数六、课堂小结1、什么是邻补角?邻补角与补角有什么区别?2、什么是对顶角?对顶角有什么性质?作业:课本8面1、2;9面7、8题。教学后记5.1.2 垂线(一)个性化设计教学目标1、了解垂线段的概念;2、理解“垂线段最短”的性质;3、体会点到直线的距离的意义, 并会度量点到直线的距离.重点难点“垂线段最短”的性质,点到直线的距离的概念及其简单应用是重点;理解点到直线的距离的概念是难点。教学过程一、情景导入 投影1 如图(课本图5.1-8),在灌溉时,要把河中的水引到农田P处, 如何挖渠能使渠道最短? 说到最短,上学期我们曾经学过什么最短的知识,还记得吗? 两点之间,线段最短.如果把渠道看成是线段,它的一个端点自然是点P,那么另一个端点的位置在什么地方呢?把江河看成直线l,那么原问题就是这样的数学问题:在连接直线l外一点P与直线l 上各点的线段中,哪一条最短?二、垂线的性质2演示:在黑板上固定木条l, l外一点P,木条a一端固定在点P,使之与l相交于点A。左右摆动木条a, l与a的交点A随之变动,线段PA 的长度也随之变化,a与l的位置关系怎样时,PA最短?a与l垂直时,PA最短。这时的线段PA叫做垂线段。投影2画出PA在摆动过程中的几个位置,如图,点A1、A2、A3在l上,连接PA1、PA2、PA3,PO l,垂足为O,用叠合法或度量法比较PO、PA1、PA2、PA3的长短,可知垂线段PO最短。 lPOA2A1A3连接直线外一点与直线上各点的所有线段中,垂线段最短, 简单说成:垂线段最短.二、点到直线的距离我们知道,连接两点的线段的长度叫做两点间的距离,这里我们把直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如上图,PO就是点P到直线l的距离。注意:点到直线的距离和两点间的距离一样是一个正值,是一个数量,所以不能画距离,只能量距离。三、课堂练习投影31、判断正确与错误,如果正确,请说明理由,若错误,请订正. (1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离. (2)如图,线段AE是点A到直线BC的距离. (3)如图,线段CD的长是点C到直线AB的距离. 1题图 2题图投影42已知直线a、b,过点a上一点A作ABa,交b于点B,过B作BCb交a 上于点C.请说出线段AE的长是哪一点到哪一条直线的距离?CD的长是哪一点到哪一条直线的距离?3、课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:100000, 水渠大约要挖多长?四、课堂小结1、垂线段、点到直线的距离概念;2、垂线的性质2及应用.作业: 课本8面6题,9面10题,10面13题。 教学后记5.2.1平行线教学目标1、了解平行线的概念,理解同一平面内两条直线间的位置关系;2、掌握平行公理及平行线的画法。重点难点平行线的概念、画法及平行公理是重点;理解平行线的概念和根据几何语言画出图形是难点。教学过程 一、情景导入我们知道两条直线相交只有一个交点,除相交外,两条直线还存在其它的位置关系吗?看下面的图片:投影1 双杆上面的两根横杆、支撑横杆的直干它们所在的直线相交吗?游泳池中分隔泳道的线它们所在的直线相交吗?屏风的折处和边所在的直线相交吗?今天我们就来讨论这样的问题。二、平行线演示:分别将木条a、b与木条c钉在一起,,并把它们想象成三条直线。转动a,直线a从在c的左侧与直线b相交逐步变为在右侧与b相交。想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?abcabcabc有,这时直线a与直线b左右两旁都没有交点。同一平面内, 不相交的两条直线叫做平行线.直线AB与直线CD平行,记作“ABCD”.注意:“同一平面内”是前提,以后我们会知道,在空间即使不相交,可能也不平行;平行线是“两条直线”的位置关系,两条线段或两条射线平行,就是指它们所在的直线平行;“不相交”就是说两条直线没有公共点。归纳一下,在同一平面内,两条直线有几种位置关系?动手画一画。相交和平行两种。注意:这里所指的两条直线是指不重合的直线。三、平行公理再来看上面的实验,想象一下,在转动木条a的过程中,有几个位置能使a与b平行?有且只有一个位置使a与b平行线 如图,过点B画直线a的平行线,能画几条?试试看。 只能画一条。从实验和作图,我们可以得到怎样的事实?经过直线外一点,有且只有一条直线与这条直线平行.这一基本事实是人们在长期的实践中总结出来的结论,我们称它为公理,这个结论叫做平行公理。在上图中,过点C画直线a的平行线,它与过点B画的的平行线平行吗?试试看。 过点C画的直线a的平行线与过点B画的直线a的平行线相互平行。这说是说,如果两条直线都与第三条直线平行,那么这条直线也互相平行.符号语言:ba,ca bc.如果b与c不平行,那么经过直线外一点就有两条直线与已知直线平行,所以上面的结论是平行公理的推论。四、课堂练习投影21、判断下列说法是否正确?(1)在同一平面内,两条线段不相交就平行;(2)在同一平面内,平行于直线AB的直线只有一条。(3)如果几条直线都和同一条直线平行,那么这几条直线都互相平行。2、课本13面练习.五、课堂小结1、什么是平行线?“平行”用什么表示?2、平面内两条直线的位置关系有哪些?3、平行公理及推论是什么?作业:课本16面3题,17面8题,18面9、11题。教学后记5.1.3 同位角、内错角、同旁内个性化设计教学目标1、理解同位角、内错角、同旁内角的概念;2、会识别同位角、内错角、同旁内角.重点难点同位角、内错角、同旁内角的概念与识别是重点;识别同位角、内错角、同旁内角是难点。教学过程 一、导入新课前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。二、同位角、内错角、同旁内角如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。我们来研究那些没有公共顶点的两个角的关系。 56871与2、4与8、5与6、3与7有什么位置关系?在截线的同旁,被截直线的同方向(同上或同下).具有这种位置关系的两个角叫做同位角。同位角形如字母“F”。3与2、4与6的位置有什么共同的特点?在截线的两旁,被截直线之间。具有这种位置关系的两个角叫做内错角.内错角形如字母“N”。3与6、4与2的位置有什么共同的特点?在截线的同旁,被截直线之间。具有这种位置关系的两个角叫做同旁内角.同旁内角形如字符“匚”。思考:这三类角有什么相同的地方?(1)都不相邻即不存在共公顶点;(2)有一边在同一条直线(截线)上。三、例题例 如图,直线DE,BC被直线AB所截,(1)1与2、1与3、1与4各是什么角?为什么?(2)如果1=4,那么1与2相等吗?1与3互补吗?为什么? 31BD4ACE2解:(1)1与2是内错角,因为1与2在直线DE,BC之间,在截线AB的两旁;1与3是同旁内角,因为1与3在直线DE,BC之间,在截线AB的同旁;1与4是同位角,因为1与4在直线DE,BC的同方向,在截线AB的同方向。(2)如果1=4,又因为2=4,所以1=2;因为3+4=1800,又1=4,所以1+3=1800,即1与3互补。四、课堂练习1、课本7面练习1;2、投影2指出图中所有的同位角、内错角、同旁内角; ABCD3、课本7面练习2。作业:课本9面11题.教学后记5.2.2 平行线的判定(一)个性化设计教学目标经历探索两直线平行条件的过程,理解两直线平行的条件.重点难点探索两直线平行的条件是重点,理解“同位角相等,两条直线平行”是难点。教学过程 一、情景导入.投影1如图1,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行? 5687 图1 图2 要解决这个问题,就要弄清楚平行的判定。二、直线平行的条件以前我们学过用直尺和三角尺画平行线,如图(课本13面图5.2-5)在三角板移动的过程中,什么没有变?三角板经过点P的边与靠在直尺上的边所成的角没有变。简化图5.2-5,得图3. 图3 1与2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然1与2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单地说:同位角相等,两条直线平行.符号语言: 1=2 ABCD.如图(课本14面5.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线。投影2如图,(1)如果2=3,能得出ab吗?(2)如果241800,能得出ab吗? 32bac41 (1)2=3(已知)3=1(对顶角相等)1=2 (等量代换) ab(同位角相等,两条直线平行) 你能用文字语言概括上面的结论吗? 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单地说:内错角相等,两直线平行. 符号语言:2=3 ab.(2) 4+2=180,4+1=180 (已知) 2=1 (同角的补角相等) ab. (同位角相等,两条直线平行)你能用文字语言概括上面的结论吗? 两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行. 简单地说:同旁内角互补,两直线平行. 符号语言: 4+2=180 ab.四、课堂练习1、课本15面练习1,补充(3)由A+ABC1800可以判断哪两条直线平行?依据是什么?2、课本16面2题。五、课堂小结怎样判断两条直线平行?作业:16面1、2题;17面4、5、6。教学后记5.2.2 平行线的判定(二)个性化设计教学目标1、掌握直线平行的条件,并能解决一些简单的问题;2、初步了解推理论证的方法,会正确的书写简单的推理过程。重点难点直线平行的条件及运用是重点;会正确的书写简单的推理过程是难点。教学过程 一、复习导入 我们学习过哪些判断两直线平行的方法?投影1(1)平行线的定义:在同一平面内不相交的两条直线平行。(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行。(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.二、例题 投影2 例 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? 答:这两条直线平行。 ba ca(已知) 1=2=90(垂直的定义) bc(同位角相等,两直线平行)你还能用其它方法说明bc吗? 方法一: 如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明. (1) (2)注意:本例也是一个有用的结论。例2 投影3 如图,点B在DC上,BE平分ABD,DBE=A,则BEAC,请说明理由。 ABCDE 分析:由BE平分ABD我们可以知道什么?联系DBE=A,我们又可以知道什么?由此能得出BEAC吗?为什么?解:BE平分ABD ABE=DBE(角平分线的定义) 又DBE=A ABE=A(等量代换) BEAC(内错角相等,两直线平行)注意:用符号语言书写证明过程时,要步步有据。四、课堂练习投影21、如图,1=2=55,试说明直线AB,CD平行? 3ABCDEF21 1题 2题2、如图所示,已知直线a,b,c,d,e,且1=2,3+4=180,则a与c平行吗?为什么?作业:课本17面7,18面12题(提示:画图说明)。补充题:如图所示,已知1=2,AB平分DAB,试说明DCAB.教学后记5.3.1 平行线的性质个性化设计教学目标 经历探索直线平行的性质的过程,掌握平行线的性质,并能用它们进行简单的推理和计算.重点难点 直线平行的性质是重点;区别平行线的性质和判定,综合运用平行线的性质和判定是难点。教学过程一、复习导入怎样判定两条直线平行?这就是说,利用同位角、内错角和同旁内角可以判定两条直线平行,反过来,两条直线平行,同位角、内错角和同旁内角各有什么关系呢?二、平行线的性质利有练习本上的横线画两条平行线ab,然后画一条直线c与这两条直线相交,标出所形成的八个角,如图。 5786 度量这些角的度数,把结果填入表内:角12345678度数哪些角是同位角?它们具有怎样的数量关系? 哪些角是内错角?它们具有怎样的数量关系?哪些角是同旁内角?它们具有怎样的数量关系?再任意画一条截线d,同样度量并计算各个角的度数,这种数量关系还成立吗?那么由此你得到怎样的事实:1、平行线被第三条直线所截,同位角相等,简单说成:两直线平行, 同位角相等. 2、平行线被第三条直线所截,内错角相等,简单说成:两直线平行, 内错相等. 3、平行线被第三条线所截,同旁内角互补,简单说成:两直线平行, 同旁内角互补.思考:平行线的性质与平行线的判定有什么关系?由角的数量关系得出两条直线平行是“判定”,由两条直线平行得出角的数量关系是“性质”,因此,两者的条件和结论正好互换。你能根据性质1,推出性质2吗?如上图,ab 1=2(两直线平行,同位角相等) 又3=1(对顶角相等) 2=3.对于性质3,你能写出类似的推理过程吗?三、例题如图是一块梯形铁片的线全部分,量得D=100,C=115, 梯形另外两个角分别是多少度? 分析:梯形有什么特征?A与D、B 与C有什么关系?解:ABCD A+D=1800,B +C=1800A=1800D=18001000=800 B=1800C=18001150=650 答:梯形的另外两个角分别是800,650。四、课堂练习课本21面练习1、2。五、课堂小结这节课我们学习了平行线的性质,要注意平行线的性质与平行线的判定的区别与联系,以便我们能准确地运用。 作业: 课本22面1题,23面2、3、4、5题。教学后记5.3.2命题、定理个性化设计教学目标 1、了解命题、定理、证明的含义,会区分命题的题设和结论。重点难点命题及组成是重点;区分命题的题设和结论是难点。教学过程一、情景导入我们平常说的话细究起来是有区别的,例如,“你吃饭了吗?”与“今天天气不好”就有区别,前一句表示疑问,没有作出判断,后一句作出了判断。数学中象这类对某件事情作出判断的语句还很多,值得我们研究。二、命题再来看几个句子:投影1 如果两条直线都与第三条直线平行,那么这两条直线也互相平行; 等式两边都加同一个数,结果仍是等式; 相等的角是对顶角;如果两条直线不平行,那么内错角不相等;同位角相等。 这些语句都对某一件事情作出了“是”或“不是”的判断,象这样判断一件事情的语句,叫做命题。思考:投影2 下列语句是命题吗?为什么? 蓝蓝的天空白云飘;这不是坑人吗?画ABCD。不是命题。因为它们只是对某件事情进行了陈述,表达了疑问,并没有作出判断。二、命题的构成命题由题设和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。命题常可以写成“如果那么”的形式,这时“如果”后面的部分是题设,“那么”后面的部分是结论。例如,上面命题中,“两条直线都与第三条直线平行”是已知事项,是题设,“这两条直线也互相平行”是由已知事项推出的事项,是结论。有些命题的题设和结论不明显,怎样才能找出题设和结论呢?我们可以将它们改写成“如果那么”的形式。例如,上面命题可改写成:如果两个角是同位角,那么这两个角相等。请你把上面的命题、改写成“如果那么”的形式,并指出它的题设和结论。三、命题的真假上面的命题中有正确的,也有错误的,正确的命题叫做真命题,错误的命题叫做假命题,如果是真命题,题设成立,那么结论一定成立,如果是假命题,题设成立,不一定能保证结论成立。要确定一个命题是真命题,必须通过推理证实,推理的过程叫做证明,通过证明是真的命题叫做定理,定理是推理的依据;要确定一个命题是假命题,只需举一个反例即可。探究:投影3 下面的命题是真命题,还是假命题?1、锐角小于它的余角;2、若a2b2则,ab.3、如图,如果1=2,CEBF,那么ABCD; ABCDEF12 1、是假命题,如650角的余角是350,而650大于350。2、是假命题,如当a=3,b=2时a2b2,而ab。3、是真命题。证明:CEBF C=2(两直线平行,同位角相等)又1=2(已知)C=1(等量代换)ABCD(内错角相等,两直线平行)四、课堂练习投影41、判断下列句子是不是命题:(1)平行用符号“”表示;(2)你喜欢数学吗?(3)熊猫没有翅膀。2、将下列命题改写成“如果那么”的形式,并指出它的题设与结论。(1)等角的补角相等;(2)负数之和仍为负数;(3)两点确定一条直线。3、如图,如果ACDE,1=2,那么ABCD,这个命题是真命题,还是假例题? ABCDE12 五、课堂小结1、命题及构成;2、公理、定理、证明的概念.作业:课本23面6题;24面7、8、11、12题。课外完成24面9、10题。教学后记54 平 移教学目标经历欣赏、观察、分析图形的过程,理解平移的概念,探索平移的性质;通过动手操作,学会平移后图形的画法;学会用运动的观点分析问题,在欣赏和操作中获得数学美的熏陶.重点难点平移的性质和作平移后的图形是重点;作平移后的图形是难点。教学过程一、情景导入仔细观察下面的图案,它们有什么共同特点?它们都是由一些相同的部分组成的。能否根据其中相同的部分绘制出整个图案?若能,请你想象可以怎么绘制?投影2 这种绘制方法实际上就是平移。那么究竟什么是平移?平移有哪些性质?下面我们就来探讨一下。二、平移的性质探究:如何在一张半透明的纸上,画出一排形状大小如图5.4-2的雪人? 投影3 可以把半透明的纸盖在图5.4-2上,先描出一个雪人,然后按同一方向陆续移动这张纸,再描出第二个、第三个观察:在所画的相邻两个雪人中,找出鼻尖A ,帽顶B,纽扣C的对应点A、B、C,连接这些对应点,观察得出的线段,它们的位置、长度有什么关系?投影45 雪人甲雪人乙可以发现:AABBCC,且AA=BB=CC请你用平推三角尺的方法验证三条线段是否平行, 用刻度尺度量三条线段是否相等. 再作出一些其他对应点的线段,它们是否仍有前面的关系?归纳:投影6把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. 新图形中的每一个点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.三、平移的概念一个图形沿着某个方向移动一定的距离,图形的这种移动,叫做平移变换,简称平移.注意:图形平移的方向,不一定是水平的,也不一定是竖直的,如图投影78。 平移在我们日常生活中是很常见的.利用平移可以制作出很多美丽的图案,请欣赏:投影9 你能举出生活中一些利用平移的例子吗?如在笔直公路上跑着的汽车,工厂里传送带上的产品,大厦中电梯的升降投影1012四、平移作图例投影13 如图,平移三角形ABC,使点A移动到点A.画出平移后的三角形ABC. 分析:“点A移动到点A ”这句话告诉我们什么: 平移的方向和距离。解:连接AA,过点B作AA的平行线l,在l上截取BB =AA,点B 就是点B的对应点.类似地,你能作出点C的对应点C 吗?连接AB,BC,AC,则ABC 就是平移后的三角形.反思:1、作平移后的图形必须知道平移的方向和距离;2、作平移后的图形只须作出几个关键点。五、课堂练习1、投影14下图中,图形(2)可以通过图形(1)平移得到吗? (1) (2) (1) (2) (1) (2) (1) (2) 2、投影15 在下面的六幅图案中,(2)(3)(4)(5)(6)中的哪个图案可以通过平移图案(1)得到? 3、投影16将图中的小船向左平移四格.六、课堂小结投影171、什么是平移?平移的条件是什么?2、平移有哪些性质?3、平移作图形的依据是什么?怎样作平移后的图形?作业:课本30面1、2、3、4、5题。教学后记本章小结个性化设计一、知识结构相交线平行线两条直线相 交两条直线被第三条直线所截邻补角、对顶角垂线及其性质对顶角相等点到直线的距离同位角、内错角、同旁内角平行公理平 移判 定性 质二、回顾与思考1、在平面内,不重合的两条直线的位置关系有哪几种?2、下面是本章学到的一些数学名词,你能用自己的语言给它们一个简短的描述吗?你能画出一个图形来表示它们吗?对顶角 邻补角 垂直 平行 同位角 内错角 同旁内角 平移3、什么叫垂线?什么叫垂线段?垂线有哪些性质?4、什么是两点间的距离?什么是点到直线的距离?4、怎样判断两条直线平行?平行线有什么性质?平行线的性质和直线平行的判定方法有什么关系?5、图形平移时,图形的大小和形状有什么关系?连接各对应点的线段有什么关系?6、什么叫命题?命题的结构是什么?怎样确定一个命题是真命题还是假命题?三、例题导引例1 如图,已知ABCD,A=C,用三种方法说明BCAD。ABCD例2 BCD,直线EF分别交AB,CD于E,F,EG平分BEF,若1=72,求2的度数。例3 如图所示,已知ABCD,探索下列二个图形中P与A,C的关系。 四、布置作业课本35面复习题5。13题课外完成。教学后记6.1.1有序实数对教学目标理解有序数对的意义,能利用有序数对表示物体的位置。重点难点有序数对的概念,用有序数对来表示物体的位置是重点;用有序数对表示平面内的点是难点。教学过程一、问题导入在日常生活中,我们常常会碰到这样的问题:到电影院看电影你怎样找到自己的位置?在地图上你怎样确定一个地点的位置?下象棋时,有人说“炮二平八”,你怎么走棋子?这些都说的是用两个数确定一个物体的位置,那么怎样确定一个物体的位置呢?二、有序数对投影1下面是根据教室平面图写的通知:请以下座位的同学:(1,5)、(2,4)、(4,2)、(3,3)、(5,6),今天放学后参加数学问题讨论. 怎样确定教室里座位的位置? 可用排数和列数两个不同的数来确定位置。排数和列数的先后顺序对位置有影响吗?举例说明。排数和列数的先后顺序对位置有影响,如(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”,则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。这就是说用两个数表示物体的位置是有顺序的。假设我们约定“列数在前,排数在后”,请你在课本图6.1-1上标出被邀请参加讨论的同学的座位。上面提到的问题都是通过像“几排几号”这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。利用有序数对,可以很准确地表示出一个位置。生活中利用有序数对表示位置的情况是很常见的。你能再举出一些例子吗?三、例题投影2写出表示学校里各个地点的有序数对. 10大门食堂宿舍楼宣传橱窗实验楼教学楼运动场办公楼(5,2)分析:从表示大门的有序数对你能知道前一个数的意义是什么?后一个数的意义是什么吗?答:宣传橱窗(2,2),办公楼(3,3),实验楼(3,7),运动场(6,8),教学楼(7,4),宿舍楼(8,5),食堂(9,6)。四、课堂练习课本40面练习。五、课堂小结1、在生活中的许多情况下,我们可以用一对有序数对表示位置,当然表示位置的方法不止这一种,以后我们会知道还有其它的表示位置的方法。2、用有序数对表示位置时,要注意数对的顺序,明确前一个数的意义和后一个数的意义,这样我们才不会搞错。作业:课本44面1题。6.12平面直角坐标系 (一)个性化设计教学目标1、认识平面直角坐标系的意义;2、理解点的坐标的意义;3、会用坐标表示点。重点难点平面直角坐标系和点的坐标是重点;根据点的位置写出点的坐标是难点。教学过程 一、复习导入 数轴上的点可以用什么来表示? 可以用一个数来表示,我们把这个数叫做这个点的坐标。投影1如图,点A的坐标是2,点B的坐标是3。 C 坐标为4的点在数轴上的什么位置?在点C处。这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了。类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢?二、平面直角坐标系我们知道,平面内的点的位置可以用有序数对来表示,为此,我们可以在平面内画出两条互相垂直、原点重合的数轴组成直角坐标系来表示。 如图,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点。有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。二、点的坐标如图,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4)。 A3 4MN(3,4) 4 3 B C D 类似地,请你根据课本41面图6.1-4,写出点B、C、D的坐标.B(-3,4)、C(0,2)、D(-3,0).注意:写点的坐标时,横坐标在前,纵坐标在后。三、四个象限 建立了平面直角坐系以后,坐标平面就被两条坐标轴分成、 四个部分,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限。投影2 第二象限( , )第一象限( , )第二象限( , )第二象限( , )做一做:课本43面练习1题。思考:1、原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点? 原点O的坐标是(0,0),x轴上的点的纵坐标为0,y轴上的点的横坐标为0。2、各象限内的点的坐标有什么特点? 第一象限上的点,横坐标为正数,纵坐标为正数; 第二象限上的点,横坐标为负数,纵坐标为正数; 第三象限上的点,横坐标为负数,纵坐标为负数; 第四象限上的点,横坐标为正数,纵坐标为负数.四、课堂练习投影31、点A(-2,-1)与x轴的距离是_,与y轴的距离是_.注意:纵坐标的绝对值是该点到x轴的距离,横坐标的绝对值是该点到y轴的距离。2、点A(3,a)在x轴上,点B(b,4)在y轴上,则a=_,b=_.3、点M(-2,3)在第 象限,则点N(-2,-3)在_象限.,点P(2, -3) 在_象限,点Q(2, 3) 在_象限.五、课堂小结1、平面直角坐标糸及有关概念;2、已知一个点,如何确定这个点的坐标.3、坐标轴上的点和象限点的特点。作业:课本44面2;45面3;47面12题。6.12平面直角坐标系 (二)教学目标1、在给定的直角坐标系中,会根据坐标描出点的位置;2、能建立适当的直角坐标系,描述物体的位置。重点难点描出点的位置和建立坐标系是重点;适当地建立坐标系是难点。教学过程 一、复习导入投影1写出图中点A、B、C、D、E的坐标。.由点的位置可以写出它的坐标,反之,已知点的坐标怎样确定点的位置呢?二、例题投影2例 在平面直角坐标系中描出下列各点: A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4).分析:根据点的坐标的意义,经过A点作x轴的垂线,垂足的坐标是A点横坐标,作y轴的垂线,垂足的坐标是A点的纵坐标。你认为应该怎样描出点A的坐标?先在x轴上找出表示4的点,再在y轴上找出表示5的点, 过这两个点分别作x轴和y轴的垂线,垂线的交点就是A.类似地,我们可以描出点B、C、D、E.三、建立直角坐标糸 投影3 探究:如图,正方形ABCD的边长为6. (1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y轴是哪条线? y轴是AD所在直线. (2)写出正方形的顶点A、B、C、D的坐标.A(0,0),B(0,6),C(6,6),D(6,0).(3)请你另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下.可以看到建立的直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?要尽量使更多的点落在坐标轴上。四、课堂练习投影41、课本43面练习2题.2、在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点, 所组成的图形是_.五、课堂小结1、已知点的位置可以写出它的坐标,已知点的坐标可以描出点的位置。点与有序数对(坐标)是一一对应的关系。2、为了方便地描述物体的位置,需要建立适当的直角坐标糸。作业:课本45面4、5、6;46面9题。教学后记6.21用坐标表示地理位置 教学目标会根据实际情况建立适当的直角坐标系,并能用坐标表示地理位置。重点难点建立直角坐标系和用坐标表示地理位置是重点;建立适当的直角坐标系是难点。教学过程 一、情景导入投影1二、用坐标表示地理位置探究:投影2根据以下条件画一幅示意图,标出学校和小刚家、小强家、小敏家的位置小刚家:出校门向东走150米,再向北走200米小强家:出校门向西走200米,再向北走350米,最后再向东走50米小敏家:出校门向南走100米,再向东走300米,最后向南走75米 学校(150,200)小刚家O我们知道,在平面内建立直角坐标系后,平面内的点都可以用坐标来表示,为此,要确定区域内一些地点的位置,就要建立直角坐标系。思考:以什么位置为原点?如何确定x轴、y轴?选取怎样的比例尺?小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点以正东方向为x轴,以正北方向为y轴建立直角坐标系。取比例尺1:10000(即图中1格相当于实际的100米)点(150,200)就是小刚家的位置。请你在课本50面图6.22上画出小强家、小敏家的位置,并标明它们的坐标。归纳一下,投影3利用平面直角坐标系确定区域内一些地点的位置的步骤是什么?(1)建立直角坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,定出坐标系中的单位长度;(3)在坐标平面内画出表示地点的点,写出各点的坐标和各个地点的名称注意:(1)通常选择比较有名的地点,或者较居中的位置为坐标原点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国物理抗菌防臭袜行业营销创新策略及未来销售趋势报告
- 2025-2030中国炮姜提取物市场深度评估及未来营销创新策略报告
- 有家具房屋租赁合同书2篇
- 2025年处方管理办法考核试题及答案
- 有关家居装修合同范本3篇
- 离婚协议中关于财产分割与子女抚养及赡养费协议
- 金融机构劳动合同主体变更与风险控制协议
- 《军人离婚后的退役金分配合同》
- 科技企业研发人员离职协议书模板与知识产权保护
- 皮肤常见问题与解决试题及答案
- 《穴位贴敷治疗》课件
- 临时施工围挡安全应急预案
- 2024年旧楼简易改造合同范本
- 电话客服服务流程与标准
- GB/T 33629-2024风能发电系统雷电防护
- 综合应用能力事业单位考试(综合管理类A类)试题及解答参考(2024年)
- 2024-2025学年中职数学拓展模块一 (上册)高教版(2021·十四五)教学设计合集
- 新苏教版六年级科学上册活动手册答案
- 新人教版七年级上册初中数学全册教材习题课件
- 《中小学生研学旅行实务》研学旅行指导课程全套教学课件
- 兼任宗教活动场所管理组织负责人备案表
评论
0/150
提交评论