


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
26.2.4 二次函数yax2bxc的图象与性质一、教学目标 知识与技能:使学生掌握用描点法画出函数yax2bxc的图象。过程与方法:使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。情感态度与价值观:让学生经历探索二次函数yax2bxc的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数yax2bxc的性质。二、重点:用描点法画出二次函数yax2bxc的图象和通过配方确定抛物线的对称轴、顶点坐标三、难点:理解二次函数yax2bxc(a0)的性质以及它的对称轴(顶点坐标分别是x、(,)四、教具准备:投影仪、幻灯片、课外资料。五、教学过程:一、提出问题 你能画出函数yx2x的图象,并说明这个函数具有哪些性质吗?因为yx2x(x1)22,所以这个函数的图象开口向下,对称轴为直线x1,顶点坐标为(1,2)二、解决问题 由以上第4个问题的解决,我们已经知道函数yx2x的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数yx2x的图象,进而观察得到这个函数的性质。 解:(1)列表:在x的取值范围内列出函数对应值表;x2101234y6422246 (2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑的曲线顺次连接各点,得到函数yx2x的图象,如图所示。 说明:(1)列表时,应根据对称轴是x1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。 (2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观。 让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质; 当x1时,函数值y随x的增大而增大;当x1时,函数值y随x的增大而减小;当x1时,函数取得最大值,最大值y2三、做一做 1请你按照上面的方法,画出函数yx24x10的图象,由图象你能发现这个函数具有哪些性质吗? 2通过配方变形,说出函数y2x28x8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少? 以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数yax2bxc(a0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗? 教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识; yax2bxc a(x2x)c ax2x()2()2c ax2x()2c a(x)2 当a0时,开口向上,当a0时,开口向下。 对称轴是xb/2a,顶点坐标是(,)六、作业七、板书设计:八、小结:作业优化设计1填空:(1)抛物线yx22x2的顶点坐标是_;(2)抛物线y2x22x的开口_,对称轴是_;(3)抛物线y2x24x8的开口_,顶点坐标是_;(4)抛物线yx22x4的对称轴是_;(5)二次函数yax24xa的最大值是3,则a_2画出函数y2x23x的图象,说明这个函数具有哪些性质。3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y3x22x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年普通话考试语言习惯题与试题及答案
- 2025年病历书写规范、值班与交接班制度考核试题(附答案)
- 辽宁大连中考试卷及答案
- 理疗师证考试题库及答案
- 甘肃高二物理中考试卷及答案
- 财管专业理论考试题库及答案
- 柯桥卫生招聘考试题库及答案
- 滴滴未通过安全培训课件提示
- 滴滴女司机空跑安全培训课件
- 安阳文博安全培训课件
- 施工单位项目部安全管理体系
- 期权考试题库及答案
- DB44∕T 2569-2024 碧道工程规划设计导则
- 心理健康五进活动方案
- 数据中心防雷应急预案范文
- 医疗纠纷预防和处理条例培训课件
- 医院后勤教育培训课件
- 战后日本教育改革与发展进程
- 质量缺陷闭环管理制度
- 公司自动化项目管理制度
- 2025年上海市中考语文试卷真题及答案详解(精校打印版)
评论
0/150
提交评论