电子科大矩阵理论平时作业-论文.doc_第1页
电子科大矩阵理论平时作业-论文.doc_第2页
电子科大矩阵理论平时作业-论文.doc_第3页
电子科大矩阵理论平时作业-论文.doc_第4页
电子科大矩阵理论平时作业-论文.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高维随机矩阵理论在数组信号检测与估计中的应用 摘要 本文中,我们展示了高维随机矩阵理论在频谱中的要素、相关源的检测并解决了在大数组中的估计问题。这些结果适用于样本空间的协方差矩阵中所检测的数据。可以看出,可以实现的检测样品尺寸大小小于传统方法所要求的。如果确定了预定的方向,可以通过给设置限制条件,包括从高维随机矩阵理论中提出的,可以得到更加准确的估计。一组理论用来解决可行性问题。讨论了一些没有解决的问题。问题声明 我们认为,当p很大时,检测映射在数列p(q0,m+,使为m*m的对称非负有限维随机矩阵与独立,存在一个整数序列使得对中每一个k有满足克莱曼法则的充分条件,有且仅有离散函数H在时。使。依概率弱收敛于在离散函数F当,内核遍历所有w的所有非负整数使得使得和。此外,此时唯一确定F。下面的定理在是单位矩阵的倍数时适用。定理2 当,F已知,代数密度在是正实数。最大的特征值几乎可以肯定收敛依各自概率于当且仅当分别有。此外,如果是标准高斯化,当时,的最小特征值收敛于。 还几个有关于F的结果在14中提到,包括在y0时,F收敛于H,和通过y和H计算F的方法。信号检测中的应用 现有的方法,比如在信息论的基础上,依靠样本空间的协方差的噪声特征值之间的相关性。在源的数量很大时,为了获得很好的估计,需要很大的样本量(有时是无法得到的)。在信号上附加假设时(包括快照的独立性),定理1表明,p和n充分大时,有很大的可能性,经验离散函数接近于离散函数F,当m=p,y=p/n和。 当H是这样时进一步的分析表明,可以计算的到 当且仅当F可以被分解成至少2个间隔,当最左边的间隔具有质量(p-q)/p。例如,在模拟14中,p=50,的结果为1.058,从而可以允许相对较小的样本大小。然而,模拟显示比起分解F特征值分解更加有效。因此,下面的数学验证这种现象是有效的,会被分解成2个数量级与传感器相同的2组,每个组左依赖于真正的协方差举证的最小特征值重数。因此,检测可以以大大小于以前方法所要求的样本大小实现。方位估计中的应用 在我们的基本假设下,波达方向可以通过MUSIC算法的空间协方差矩阵R计算。在实践中,由于缺乏对R的认识,必须在观察样本协方差矩阵的基础上就行计算。因为往往是R的较差的近似,该方法可以在应用于MUSIC前通过以一个满足上述先验约束的矩阵来代替。通过调用一套理论来估算和表示的约束,这个可行性问题可以归结为找到子集中的一个R在一般情况下,直接找到一个在S中的点是不可能的。使投影映射到,是在中距离Q最近的(为了使计算可追踪,我们应采取Frobenius距离)。在特定的集合和初始点,序列将收敛于,其中。在这个方案中,集合周期性的更新,通过当前集合预测下一集合。首先,我们可以在R-空间带来的问题构建一套真正的协方差矩阵的估计。根据上述假设,R的秩为q是一个明显的先验约束。因此,可以考虑(封闭的,非凸)矩阵的秩最多为q。其他的限制可能会从这个几何数组中出现。因此,如果等间距的传感器阵列是线性的,R将有一个Toeplitz矩阵结构,并可取是Toeplitz矩阵的子空间。几个在阵列处理中使用投影到的应用已经被报道,列入9,通常被称为Toeplitzation。文献2提出通过和交替预测。应该指出的是,在这样的过程中,可能会出现正定性的损失。因此,应该加入第三个集合,即正定矩阵。在模拟中,通过使用协方差矩阵约束而不是他原是对应的已经被报道,特别是当样本数目n的信噪比很低时。在上述方法中,想要直接估计R,这限制了对噪声提供的信息利用。另一种方法是估计无噪声p*n的数据矩阵模型中。H的估计值可以通过各种约束条件合成。然后可以形成约束估计,例如,对它使用MUSIC。现在让我考虑可以施加到H上的约束。为此目的,对给定的H估计值定义了剩余矩阵。注意到,我们有。因此,所有涉及到N的统计信息可以加在上,并可以根据这个规则建立几个集合。举例来说,在我们的假设下,Y()应该看起来像零均值、均方差为的独立同分布。一个直接用于分析样品均值的应用将导致一组类型其中Y()是通过层叠得到的矢量的实部和虚部。以类似的方式,可以得到Y()的其他统计。H-空间框架也使得运用高维随机矩阵的性质变得可能。事实上,根据理论2,可以通过Y()的最大奇异值获得一个限制(在高斯情况下也为最小)。在最大奇异值的情况下,可以获得其中表示谱范,表示置信区间。当然,前面提到的所有有关的约束条件也可用在H-空间。例如,设置与Toeplitz相关的约束开放的问题 高维随机矩阵有几个在应用于上述阵列信号处理中存在着几个数学问题。三个最相关的概述如下。扩展定理1 定理1的应用需要2个在形成信号向量S(t)的假设。首先是S(t)=CV(t),其中C是一个固定的qq的奇异矩阵,V(t)是独立同分布的随机变量的噪声成分。由于通常假定信号和噪声成分是高斯的,这并不会称为一个主要的问题。第二假设是整个快照下的独立的信号向量。这个更加严重,即使在几个数学处理下假定的独立样本(例如,在标准信息论中计算q),并在大多数的文献中的模拟中都能找到。扩展定理1中是否具有固定列的可能性还需要调查。特征值分解 在检测问题中,遵照精确的额特征值分解的模拟是惊人的。更强的极限性质比弱收敛的离散函数是更加有效的,证明了这种追求是值得的。结果基本上是扩展定理2上的的极端特征值。收敛速度 这个问题的普遍问题是如何快速的接近极限值。14表明,对于p=50分离噪声和信号的特征值R与分离的F是一致的。初步分析表明收敛速度1/m,支持通过限制行为可以不需要很高的m这个观点。这里提到了2个另外的问题。预测计算 集合论建议的方法来确定到达方向是有一个缺点,在涉及到计算每次迭代预测的数值时单调乏味。一般情况下,集的形式由给出,其中是一个给定的函数。通过求解最小化问题得到矩阵Q在上的投影可以通过拉格朗日乘法器得到。但是,在不是凸面的情况下,可能会出现局部最小值。在这种情况下,应该提出高效的综合方法来结局最小化问题。收敛的可行点 由于存在非凸集,一个可行点的连续投影算法的收敛性不能保证任何的初步估计。虽然用提供的的迭代点开始是个明智的选择(例如,在R-空间方法,或者在H-空间方法),但它并不能保证收敛。因此,收敛性问题值得进一步调查。参考文献1 Z. D. Bai, J. W. Silverstein, and Y. Q. Yin, “A Note on the Largest Eigenvalue of a Large Dimensional Sample Covariance Matrix,” Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, August 1988.2 J. A. Cadzow, “Signal Enhancement - A Composite Property Mapping Algorithm,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 1, pp. 49-62, January 1988.3 P. L. Combettes and M. R. Civanlar, “The Foundations of Set Theoretic Estimation,” ICASSP Proceedings, pp. 2921-2924. Toronto, Canada, May 14-17, 1991.4 P. L. Combettes and H. J. Trussell, “Method of Successive Projections for Finding a Common Point of Sets in Metric Spaces,” Journal of Optimization Theory and Applications, vol. 67, no. 3, pp. 487-507, December 1990.5 P. L. Combettes and H. J. Trussell, “The Use of Noise Properties in Set Theoretic Estimation,” IEEE Trans- actions on Signal Processing, vol. 39, no. 7, pp. 1630- 1641, July 1991.6 S. Geman, “A Limit Theorem for the Norm of Random Matrices,” The Annals of Probability, vol. 8, no. 2, pp. 252-261, April 1980.7 U. Grenander and J. W. Silverstein, “Spectral Analysis of Networks with Random Topologies,” SIAM Journal on Applied Mathematics, vol. 32, no. 2, pp. 499-519, March 1977.8 D. Jonsson, “Some Limit Theorems for the Eigenvalues of a Sample Covariance Matrix,” Journal of Multivariate Analysis, vol. 12, no. 1, pp. 1-38, March 1982.9 J. P. Lecadre and P. Lopez, “Estimation dune Ma- trice Interspectrale de Structure Imposee,” Traitement du Signal, vol. 1, pp. 4-17, December 1984.10 V. A. Marcenko and L. A. Pastur, “Distribution of Eigenvalues for Some Sets of Random Matrices,” Mathematics of the USSRSbornik, vol. 1, no. 4, pp. 457-483, 1967.11 R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Transactions on Antennas and Propagation, vol. AP-34, no. 3, pp. 276- 280, March 1986.12 J. W. Silverstein, “The Smallest Eigenvalue of a Large Dimensional Wishart Matrix,” The Annals of Probability, vol. 13, no. 4, pp. 1364-1368, November 1985.13 J. W. Silverstein, “On the Weak Limit of the Largest Eigenvalue of a Large Dimensional Sample Covariance Matrix,” Journal of Multivariate Analysis,vol. 30, no. 2, pp. 307-311, August 1989.14 J. W. Silverstein and P. L. Combettes, “Signal Detection via Spectral Theory of Large Dimensional Random Matrices,” IEEE Transactions on Signal Processing, vol. 40, no. 8, August 1992.15 Y. Q. Yin, “Limiting Spectral Distribution for a Class of Random Matrices,” Journal of Multivariate Ana

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论