《金牌学案风向标》广东省中考数学总复习 第二部分 第四章 第2讲 第2课时 等腰三角形与直角三角形课件(含10 11真题和12预测试题).ppt_第1页
《金牌学案风向标》广东省中考数学总复习 第二部分 第四章 第2讲 第2课时 等腰三角形与直角三角形课件(含10 11真题和12预测试题).ppt_第2页
《金牌学案风向标》广东省中考数学总复习 第二部分 第四章 第2讲 第2课时 等腰三角形与直角三角形课件(含10 11真题和12预测试题).ppt_第3页
《金牌学案风向标》广东省中考数学总复习 第二部分 第四章 第2讲 第2课时 等腰三角形与直角三角形课件(含10 11真题和12预测试题).ppt_第4页
《金牌学案风向标》广东省中考数学总复习 第二部分 第四章 第2讲 第2课时 等腰三角形与直角三角形课件(含10 11真题和12预测试题).ppt_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时 等腰三角形与直角三角形 1 了解等腰三角形的有关概念 掌握等腰三角形的性质和 一个三角形是等腰三角形的条件 2 了解等边三角形的概念及其性质 3 了解直角三角形的概念 掌握直角三角形的性质和一个 三角形是直角三角形的条件 4 会运用勾股定理解决简单问题 会用勾股定理的逆定理 判断一个三角形是直角三角形 2009 2011年广东省中考题型及分值分布 1 等腰三角形 1 判定 有两条边 的三角形是等腰三角形 相等 有两个角 的三角形是等腰三角形 即 等角对等 边 相等 2 三线合一 等腰三角形的顶角平分线 底边上的中线 底边上的高互相 重合 3 对称性 等腰三角形是轴对称图形 有一条对称轴 对称轴是 结论开放 底边上的中线 答案不唯一 2 等边三角形 1 等边三角形是轴对称图形 有 条对称轴 2 等边三角形的判定 三 三条边都 的三角形是等边三角形 三个角都 的三角形是等边三角形 相等 有一个角是60 的 三角形是等边三角形 3 直角三角形 等腰 1 判定 直角 一半 有一个角是 的三角形是直角三角形 有一边上的中线是这边的 的三角形是直角三角形 相等 2 性质 直角三角形的两个锐角 互余 一半 一半 直角三角形中30 角所对的直角边等于斜边的 直角三角形中 斜边上的中线长等于斜边长的 3 勾股定理及其逆定理 勾股定理 直角三角形中 两直角边的平方和 斜边 的平方 等于 平方 勾股定理的逆定理 若一个三角形中有两边的平方和等于第三边的 则这个三角形是直角三角形 重难点突破 1 等角对等边 在同一三角形内证两条边相等的应用极为广泛 往往通过计算三角形各角的度数得角相等 则可得边相等 2 等边三角形的三个判定定理的前提不同 判定定理 和 是在三角形条件下 判定定理 是在等腰三角形的条件下 3 含30 角的直角三角形的性质是由等边三角形的性质得出来的 它的主要作用是能解决直角三角形中的有关线段长度 线段关系 角的度数等的计算问题 特别在以后的学习中应用更广泛 等腰三角形的性质和判定 例1 2011年湖南株洲 如图4 2 15 abc中 ab ac a 36 ac的垂直平分线交ab于e d为垂足 连接 ec 图4 2 15 1 求 ecd的度数 2 若ce 5 求bc长 解 1 de垂直平分ac ce ae ecd a 36 2 ab ac a 36 b acb 72 ecd 36 bce acb ecd 36 bec 72 b bc ec 5 小结与反思 利用等腰三角形的性质可以得到两角相等 从而解决问题 1 2011年湖南邵阳 如图4 2 16所示 在 abc中 ab ac b 50 则 a 80 图4 2 16 5cm和6cm 那么此三角形的周长是 d a 15cmc 17cm b 16cmd 16cm或17cm 2 2011年山东济宁 如果一个等腰三角形的两边长分别是 直角三角形的性质和判定 例2 2011年四川乐山 如图4 2 17 在直角 abc中 c 90 cab的平分线ad交bc于d 若de垂直平分ab 求 b的度数 图4 2 17 解 ad平分 cab cad bad de垂直平分ab ad bd b bad cad bad b 在rt abc中 c 90 cad dae b 90 b 30 小结与反思 根据直角三角形的性质可以得到直角三角形 的两锐角互余 3 2010年湖南长沙 下列每一组数据中的三个数值分别为 三角形的三边长 不能构成直角三角形的是 c 4 2010年浙江台州 如图4 2 18 abc中 c 90 ac 3 点p是边bc上的动点 则ap长不可能是 图4 2 18 a 2 5 b 3 c 4 d 5 解析 ap ac 3 只有a不满足 a 考点误区 易错题 等腰三角形一腰上的高与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论