




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2空间的基本关系与公理1平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点在这个平面内(即直线在平面内)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线2公理4平行于同一条直线的两条直线互相平行3定理空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补4直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角定义:设a,b是两条异面直线,经过空间任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫作异面直线a,b所成的角(或夹角)范围:.5直线与平面的位置关系有平行、相交、在平面内三种情况6平面与平面的位置关系有平行、相交两种情况1判断下面结论是否正确(请在括号中打“”或“”)(1)如果两个不重合的平面,有一条公共直线a,就说平面,相交,并记作a.()(2)两个平面,有一个公共点A,就说,相交于过A点的任意一条直线()(3)两个平面,有一个公共点A,就说,相交于A点,并记作A.()(4)两个平面ABC与DBC相交于线段BC.()(5)经过两条相交直线,有且只有一个平面()2已知a,b是异面直线,直线c平行于直线a,那么c与b()A一定是异面直线 B一定是相交直线C不可能是平行直线 D不可能是相交直线答案C解析由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若bc,则ab,与已知a、b为异面直线相矛盾3下列命题正确的个数为()经过三点确定一个平面;梯形可以确定一个平面;两两相交的三条直线最多可以确定三个平面;如果两个平面有三个公共点,则这两个平面重合A0 B1 C2 D3答案C解析经过不共线的三点可以确定一个平面,不正确;两条平行线可以确定一个平面,正确;两两相交的三条直线可以确定一个或三个平面,正确;命题中没有说清三个点是否共线,不正确4如图,l,A、B,C,且Cl,直线ABlM,过A,B,C三点的平面记作,则与的交线必通过()A点AB点BC点C但不过点MD点C和点M答案D解析AB,MAB,M.又l,Ml,M.根据公理3可知,M在与的交线上同理可知,点C也在与的交线上5已知空间四边形ABCD中,M、N分别为AB、CD的中点,则下列判断:MN(ACBD);MN(ACBD);MN(ACBD);MN(ACBD)其中正确的是_答案解析如图,取BC的中点O,连接MO、NO,则OMAC,ONBD,在MON中,MNOMON(ACBD),正确题型一平面基本性质的应用例1如图所示,正方体ABCDA1B1C1D1中,E、F分别是AB和AA1的中点求证:(1)E、C、D1、F四点共面;(2)CE、D1F、DA三线共点思维启迪(1)两条相交直线或两条平行直线确定一个平面;(2)可以先证CE与D1F交于一点,然后再证该点在直线DA上证明(1)连接EF,CD1,A1B.E、F分别是AB、AA1的中点,EFBA1.又A1BD1C,EFCD1,E、C、D1、F四点共面(2)EFCD1,EFCD1,CE与D1F必相交,设交点为P,则由PCE,CE平面ABCD,得P平面ABCD.同理P平面ADD1A1.又平面ABCD平面ADD1A1DA,P直线DA.CE、D1F、DA三线共点思维升华公理1是判断一条直线是否在某个平面的依据;公理2及其推论是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据(1)以下四个命题中不共面的四点中,其中任意三点不共线;若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;若直线a、b共面,直线a、c共面,则直线b、c共面;依次首尾相接的四条线段必共面正确命题的个数是()A0 B1C2 D3(2)a、b是异面直线,在直线a上有5个点,在直线b上有4个点,则这9个点可确定_个平面答案(1)B(2)9解析(1)假设其中有三点共线,则该直线和直线外的另一点确定一个平面这与四点不共面矛盾,故其中任意三点不共线,所以正确从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确;不正确;不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形(2)a、b是异面直线,a上任一点与直线b确定一平面,共5个,b上任一点与直线a确定一平面,共4个,一共9个题型二判断空间两直线的位置关系例2如图所示,正方体ABCDA1B1C1D1中,M、N分别是A1B1、B1C1的中点问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由思维启迪第(1)问,连接MN,AC,证MNAC,即AM与CN共面;第(2)问可采用反证法解(1)不是异面直线理由如下:连接MN、A1C1、AC.M、N分别是A1B1、B1C1的中点,MNA1C1.又A1A綊C1C,A1ACC1为平行四边形,A1C1AC,MNAC,A、M、N、C在同一平面内,故AM和CN不是异面直线(2)是异面直线证明如下:ABCDA1B1C1D1是正方体,B、C、C1、D1不共面假设D1B与CC1不是异面直线,则存在平面,使D1B平面,CC1平面,D1、B、C、C1,与ABCDA1B1C1D1是正方体矛盾假设不成立,即D1B与CC1是异面直线思维升华(1)证明直线异面通常用反证法;(2)证明直线相交,通常用平面的基本性质,平面图形的性质等;(3)利用公理4或平行四边形的性质证明两条直线平行(1)如图,在正方体ABCDA1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()AMN与CC1垂直BMN与AC垂直CMN与BD平行DMN与A1B1平行(2)在图中,G、N、M、H分别是三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有_(填上所有正确答案的序号)答案(1)D(2)解析(1)连接B1C,B1D1,则点M是B1C的中点,MN是B1CD1的中位线,MNB1D1,CC1B1D1,ACB1D1,BDB1D1,MNCC1,MNAC,MNBD.又A1B1与B1D1相交,MN与A1B1不平行,故选D.(2)图中,直线GHMN;图中,G、H、N三点共面,但M面GHN,因此直线GH与MN异面;图中,连接MG,GMHN,因此GH与MN共面;图中,G、M、N共面,但H面GMN,因此GH与MN异面所以图、中GH与MN异面题型三求两条异面直线所成的角例3空间四边形ABCD中,ABCD且AB与CD所成的角为30,E、F分别为BC、AD的中点,求EF与AB所成角的大小思维启迪取AC中点,利用三角形中位线的性质作出所求角解取AC的中点G,连接EG、FG,则EG綊AB,GF綊CD,由ABCD知EGFG,GEF(或它的补角)为EF与AB所成的角,EGF(或它的补角)为AB与CD所成的角AB与CD所成的角为30,EGF30或150.由EGFG知EFG为等腰三角形,当EGF30时,GEF75;当EGF150时,GEF15.故EF与AB所成的角为15或75.思维升华(1)求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移(2)求异面直线所成的角的三步曲:即“一作、二证、三求”其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解直三棱柱ABCA1B1C1中,若BAC90,ABACAA1,则异面直线BA1与AC1所成的角等于()A30 B45C60 D90答案C解析如图,可补成一个正方体,AC1BD1.BA1与AC1所成角的大小为A1BD1.又易知A1BD1为正三角形,A1BD160.即BA1与AC1成60的角求解两条直线所成角问题概念不准确致误典例:(5分)过正方体ABCDA1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作()A1条 B2条C3条 D4条易错分析忽视异面直线所成的角,只找两条相交直线所成角,没有充分认识正方体中的平行关系解析如图,连接体对角线AC1,显然AC1与棱AB、AD、AA1所成的角都相等,所成角的正切值都为.联想正方体的其他体对角线,如连接BD1,则BD1与棱BC、BA、BB1所成的角都相等,BB1AA1,BCAD,体对角线BD1与棱AB、AD、AA1所成的角都相等,同理,体对角线A1C、DB1也与棱AB、AD、AA1所成的角都相等,过A点分别作BD1、A1C、DB1的平行线都满足题意,故这样的直线l可以作4条答案D温馨提醒求空间直线所成的角时,常犯以下错误:(1)不能挖掘题中的平行关系,找不到其所成的角;(2)线多、图形复杂、空间想象力不够,感觉无从下手方法与技巧1主要题型的解题方法(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”)(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上,因此共线2判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面3求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关,往往可以选在其中一条直线上(线面的端点或中点)利用三角形求解失误与防范1正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”2不共线的三点确定一个平面,一定不能丢掉“不共线”条件A组专项基础训练(时间:40分钟)一、选择题1若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的()A充分非必要条件B必要非充分条件C充分必要条件D既非充分又非必要条件答案A解析“两条直线为异面直线”“两条直线无公共点”“两直线无公共点”“两直线异面或平行”故选A.2若空间三条直线a,b,c满足ab,bc,则直线a与c()A一定平行B一定相交C一定是异面直线D平行、相交、是异面直线都有可能答案D解析当a,b,c共面时,ac;当a,b,c不共面时,a与c可能异面也可能相交3设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是()A(0,) B(0,)C(1,) D(1,)答案A解析此题相当于一个正方形沿着对角线折成一个四面体,长为a的棱长一定大于0且小于.选A.4四棱锥PABCD的所有侧棱长都为,底面ABCD是边长为2的正方形,则CD与PA所成角的余弦值为()A. B. C. D.答案B解析因为四边形ABCD为正方形,故CDAB,则CD与PA所成的角即为AB与PA所成的角,即为PAB.在PAB内,PBPA,AB2,利用余弦定理可知cosPAB,故选B.5设P表示一个点,a、b表示两条直线,、表示两个平面,给出下列四个命题,其中正确的命题是()Pa,PaabP,baab,a,Pb,Pbb,P,PPbA BC D答案D解析当aP时,Pa,P,但a,错;aP时,错;如图,ab,Pb,Pa,由直线a与点P确定唯一平面,又ab,由a与b确定唯一平面,但经过直线a与点P,与重合,b,故正确;两个平面的公共点必在其交线上,故正确二、填空题6平面、相交,在、内各取两点,这四点都不在交线上,这四点能确定_个平面答案1或4解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面7a,b,c是空间中的三条直线,下面给出四个命题:若ab,bc,则ac;若a与b相交,b与c相交,则a与c相交;若a平面,b平面,则a,b一定是异面直线;若a,b与c成等角,则ab.上述命题中正确的命题是_(只填序号)答案解析由公理4知正确;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故不正确;a,b,并不能说明a与b“不同在任何一个平面内”,故不正确;当a,b与c成等角时,a与b可以相交、平行,也可以异面,故不正确8若两条异面直线所成的角为60,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有_对答案24解析正方体如图,若要出现所成角为60的异面直线,则直线为面对角线,以AC为例,与之构成黄金异面直线对的直线有4条,分别是AB,BC,AD,CD,正方体的面对角线有12条,所以所求的黄金异面直线对共有24(对)三、解答题9如图,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AEEBCFFB21,CGGD31,过E、F、G的平面交AD于点H.(1)求AHHD;(2)求证:EH、FG、BD三线共点(1)解2,EFAC,EF平面ACD,而EF平面EFGH,平面EFGH平面ACDGH,EFGH,ACGH.3.AHHD31.(2)证明EFGH,且,EFGH,EFGH为梯形令EHFGP,则PEH,而EH平面ABD,又PFG,FG平面BCD,平面ABD平面BCDBD,PBD.EH、FG、BD三线共点10如图,在四棱锥OABCD中,底面ABCD是边长为2的正方形,OA底面ABCD,OA2,M为OA的中点(1)求四棱锥OABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小解(1)由已知可求得,正方形ABCD的面积S4,所以,四棱锥OABCD的体积V42.(2)连接AC,设线段AC的中点为E,连接ME,DE,则EMD为异面直线OC与MD所成的角(或其补角),由已知,可得DE,EM,MD,()2()2()2,DEM为直角三角形,tanEMD.B组专项能力提升(时间:30分钟)1 l1,l2,l3是空间三条不同的直线,则下列命题正确的是()Al1l2,l2l3l1l3Bl1l2,l2l3l1l3Cl1l2l3l1,l2,l3共面Dl1,l2,l3共点l1,l2,l3共面答案B解析当l1l2,l2l3时,l1与l3也可能相交或异面,故A不正确;l1l2,l2l3l1l3,故B正确;当l1l2l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确2如图是正四面体(各面均为正三角形)的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,GH与EF平行;B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年秋季小学教学教研课外拓展活动计划
- 线上教学与线下图书资源整合计划
- 2025年民族团结一家亲妇女儿童关爱计划
- 二年级科学上册拼读教学计划
- 地板采暖行业深度研究分析报告(2024-2030版)
- 花城版一年级音乐下册录播教学计划
- 2024年中国人造石英石行业调查报告
- 2024年中国未硫化的复合橡胶市场供需格局及未来发展趋势报告
- 2020-2025年中国电加热电缆行业发展趋势及投资前景预测报告
- 2025-2030年中国气相防锈袋行业深度研究分析报告
- 电线电缆出入库管理制度
- 供应蒸汽服务合同协议书
- T/CADCC 003-2024汽车漆面保护膜施工技术规程
- 中国机器人工程市场调研报告2025
- 2025年金融科技企业估值方法与投资策略在金融科技企业并购中的应用案例报告
- 福建省厦门市双十中学2025届七年级生物第二学期期末联考模拟试题含解析
- 【小学】新苏教版小学数学四年级下册暑假每日一练(02):计算题-应用题(含答案)
- 2025猪蓝耳病防控及净化指南(第三版)
- TCUWA20059-2022城镇供水管网模型构建与应用技术规程
- 《无人机介绍》课件
- 2025至2030中国压缩空气储能产业现状调查及项目投资策略建议报告
评论
0/150
提交评论