高考数学《基本不等式》专题复习教学案.doc_第1页
高考数学《基本不等式》专题复习教学案.doc_第2页
高考数学《基本不等式》专题复习教学案.doc_第3页
高考数学《基本不等式》专题复习教学案.doc_第4页
高考数学《基本不等式》专题复习教学案.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基本不等式【知识梳理】一、基本不等式1基本不等式成立的条件:a0,b0.2等号成立的条件:当且仅当ab时取等号二、几个重要的不等式a2b22ab(a,bR);2(a,b同号)ab2(a,bR);2(a,bR)三、算术平均数与几何平均数设a0,b0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数四、利用基本不等式求最值问题已知x0,y0,则:(1)如果积xy是定值p,那么当且仅当xy时,xy有最小值是2.(简记:积定和最小)(2)如果和xy是定值p,那么当且仅当xy时,xy有最大值是.(简记:和定积最大)【基础自测】1函数yx(x0)的值域为_解析:x0,yx2,当且仅当x1时取等号答案:2,)2已知m0,n0,且mn81,则mn的最小值为_解析:m0,n0,mn218.当且仅当mn9时,等号成立3已知0x1,则x的最小值为_解析:xx11415.当且仅当x1,即x3时等号成立答案:55已知x0,y0,lg xlg y1,则z的最小值为_解析:由已知条件lg xlg y1,可得xy10.则2 2,故min2,当且仅当2y5x时取等号又xy10,即x2,y5时等号成立 答案:21.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正各项均为正;二定积或和为定值;三相等等号能否取得”,若忽略了某个条件,就会出现错误2对于公式ab2,ab2,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab和ab的转化关系3运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a2b22ab逆用就是ab;(a,b0)逆用就是ab2(a,b0)等还要注意“添、拆项”技巧和公式等号成立的条件等【考点探究】考点一利用基本不等式求最值 【例1】(1)已知x0,则f(x)2x的最大值为_(2)(2012浙江高考)若正数x,y满足x3y5xy,则3x4y的最小值是_ 解(1)x0,x0,f(x)2x2.(x)24,当且仅当x,即x2时等号成立f(x)2242,f(x)的最大值为2.(2)x0,y0,由x3y5xy得1.3x4y(3x4y)25(当且仅当x2y时取等号),3x4y的最小值为5.【一题多变】本例(2)条件不变,求xy的最小值解:x0,y0,则5xyx3y2,xy,当且仅当x3y时取等号【由题悟法用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件【以题试法】1(1)当x0时,则f(x)的最大值为_(2)(2011天津高考)已知log2alog2b1,则3a9b的最小值为_(3)已知x0,y0,xyx2y,若xym2恒成立,则实数m的最大值是_解析:(1)x0,f(x)1,当且仅当x,即x1时取等号(2)由log2alog2b1得log2(ab)1,即ab2,3a9b3a32b23(当且仅当3a32b,即a2b时取等号)又a2b24(当且仅当a2b时取等号),3a9b23218.即当a2b时,3a9b有最小值18.(3)由x0,y0,xyx2y2,得xy8,于是由m2xy恒成立,得m28,即m10.故m的最大值为10.考点二 多元均值不等式问题【例2】设x,y,z为正实数,满足x2y3z0,则的最小值是_解析:由已知条件可得y,所以3,当且仅当xy3z时,取得最小值3. 【以题试法】若且,求的最小值 .考点三 基本不等式的实际应用【例3】(2012江苏高考)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点已知炮弹发射后的轨迹在方程ykx(1k2)x2(k0)表示的曲线上,其中k与发射方向有关炮的射程是指炮弹落地点的横坐标(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由解(1)令y0,得kx(1k2)x20,由实际意义和题设条件知x0,k0,故x10,当且仅当k1时取等号所以炮的最大射程为10千米(2)因为a0,所以炮弹可击中目标存在k0,使3.2ka(1k2)a2成立关于k的方程a2k220aka2640有正根判别式(20a)24a2(a264)0 a6.所以当a不超过6千米时,可击中目标【由题悟法】 利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.【以题试法】2(2012福州质检)某种商品原来每件售价为25元,年销售8万件(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元公司拟投入(x2600)万元作为技改费用,投入50万元作为固定宣传费用,投入x万元作为浮动宣传费用试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价解:(1)设每件定价为t元,依题意,有t258,整理得t265t1 0000,解得25t40.因此要使销售的总收入不低于原收入,每件定价最多为40元(2)依题意,x25时,不等式ax25850(x2600)x有解,等价于x25时,ax有解x2 10(当且仅当x30时,等号成立),a10.2.因此当该商品明年的销售量a至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元【巩固练习】1函数y(x1)的最小值是_解析:x1,x10.yx122 222.当且仅当x1,即x1时,取等号2设a0,b0,且不等式0恒成立,则实数k的最小值等于_解析:由0得k,而24(ab时取等号),所以4,因此要使k恒成立,应有k4,即实数k的最小值等于4.3.求函数的值域.解:令,则因,但解得不在区间,故等号不成立,考虑单调性.因为在区间单调递增,所以在其子区间为单调递增函数,故.所以,所求函数的值域为.4、求函数的最小值.解析:,当且仅当即时,“=”号成立,故此函数最小值是.5.求函数 的最大值解:,当且仅当即时,“=”号成立,故此函数最大值是16.已知x,y为正实数,且x 21,求x的最大值.解:x 即xx 7.已知ab0,求a+的最小值.8已知函数f(x)x(p为常数,且p0)若f(x)在(1,)上的最小值为4,则实数p的值为_解析:由题意得x10,f(x)x1121,当且仅当x1时取等号,因为f(x)在(1,)上的最小值为4,所以214,解得p.9已知x0,a为大于2x的常数,(1)求函数yx(a2x)的最大值; (2)求yx的最小值解:(1)x0,a2x, yx(a2x)2x(a2x)2,当且仅当x时取等号,故函数的最大值为.(2)y2 .当且仅当x时取等号故yx的最小值为.10正数x,y满足1. (1)求xy的最小值; (2)求x2y的最小值解:(1)由12 得xy36,当且仅当,即y9x18时取等号,故xy的最小值为36.(2)由题意可得x2y(x2y)19192 196,当且仅当,即9x22y2时取等号,故x2y的最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论