




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二章概率与统计 理 2012高考调研考纲要求1 了解随机变量 离散型随机变量 连续型随机变量的意义 2 了解离散型随机变量分布列的意义 会求离散型随机变量的分布列 3 了解离散型随机变量的期望 方差 标准差的意义 掌握离散型随机变量的期望 方差 标准差的计算方法 并能用期望和方差的概念解决相关的实际应用问题 4 了解频率分布的意义 掌握频率分布表的设计和频率分布条形图的画法 5 了解总体分布的意义 会用样本频率估计总体分布 6 了解正态分布的意义 掌握正态曲线的主要性质及正态分布的简单应用 7 了解标准正态分布 会使用标准正态分布表进行简单计算 8 了解线性回归方法 会根据试验数据 求出回归直线方程 会根据样本相关数公式和相关系数检验的临界值表检验两个变量的线性相关性 考情分析近几年高考对本章的考查呈以下特点 1 题型和题量选择题 或填空题 解答题 近几年平均分值在10分左右 2 知识点考查从2006年以及2010年各地试卷来看 主要考查求离散型随机变量的分布列 以及由此分布列求随机变量的数学期望和方差 特别是二项分布 涉及排列 组合 二项式定理和概率 多数试卷是一个解答题 此部分内容综合性强 实用大 与现实结合明显 是高考考查的重点 抽样方法 频率分布直方图 条形图也是考查的热点 标准正态分布的性质的考查在2006年已有体现 3 难度与创新本章在高考中的考查多以中 低档题为主 试题命题的背景每年有所变化 有所突破 但多为社会热点 第五十五讲离散型随机变量的分布列 回归课本1 离散型随机变量的概念如果随机试验的结果可以用一个变量表示 那么这样的变量叫做随机变量 随机变量常用希腊字母 等表示 离散型随机变量 如果对于随机变量可能取的值 可以按一定次序一一列出 这样的随机变量叫做离散型随机变量 若 是随机变量 a b 其中a b是常数 则 也是随机变量 2 离散型随机变量的分布列 1 概率分布 分布列 设离散型随机变量 可能取的值为x1 x2 xi 取每一个值xi i 1 2 的概率p xi pi 则表称为随机变量 的概率分布 简称 的分布列 2 二项分布 如果在一次试验中某事件发生的概率是p 那么在n次独立重复试验中这个事件恰好发生k次的概率是p k cnkpkqn k 其中k 0 1 n q 1 p 于是得到随机变量 的概率分布如下 我们称这样的随机变量 服从二项分布 记作 b n p 其中n p为参数 并记cnkpkqn k b k n p 二项分布是一种常见的离散型随机变量的分布 3 几何分布 在独立重复试验中 某试验每一次发生时 所做试验的次数 也是一个离散型随机变量 那么在第k次独立重复试验时 事件第一次发生的概率p k qk 1p 于是得到随机变量 的分布列我们称 服从几何分布 并记g k p qk 1p 其中q 1 p 4 离散型随机变量分布列的性质 pi 0 i 1 2 p1 p2 pi 1 考点陪练1 2010 太原模拟 已知随机变量 的概率分布如下 答案 c 答案 d 答案 c 4 抛掷两颗骰子 所得点数之和为 那么 4表示的随机试验结果是 a 一颗是3点 一颗是1点b 两颗都是2点c 两颗都是4点d 一颗是3点 一颗是1点或两颗都是2点解析 对a b中表示的随机试验的结果 随机变量均取值4 而d是 4代表的所有试验结果 掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键 答案 d 5 下列表中能成为随机变量 的分布列的是 a b c d 解析 a d不满足分布列的基本性质 b不满足分布列的基本性质 答案 c 类型一离散型随机变量的性质及应用 解题准备 离散型随机变量的分布列的性质主要有 1 pi 0 2 p1 p2 1 性质 1 是由概率的非负性所决定的 性质 2 是因为一次试验的各种结果是互斥的 而全部结果之和为一必然事件 解析 探究1 某射手有5发子弹 射击一次命中率为0 9 如果命中就停止射击 否则一直到子弹用尽 求耗用子弹数 的分布列 解析 的可能取值为1 2 3 4 5 p 1 0 9 p 2 0 1 0 9 0 09 p 3 0 12 0 9 0 009 p 4 0 13 0 9 0 0009 p 5 0 14 0 0001 所以耗用子弹 的分布列为 点评 求出分布列后 注意运用分布列的性质检验是否成立 即用p1 p2 1检验 类型二离散型随机变量分布列的求法解题准备 关于离散型随机变量概率分布的计算方法如下 写出 的所有可能取值 利用随机事件概率的计算方法 求出 取各个值的概率 利用 的结果 写出 的概率分布列 典例2 一袋中装有6个同样大小的黑球 编号为1 2 3 4 5 6 现从中随机取出3个球 表示取出球的最大号码 求 的分布列 解析 随机变量 的取值为3 4 5 6 从袋中随机地取3个球 包含的基本事件总数为c63 事件 3 包含的基本事件总数为c33 事件 4 包含的基本事件总数为c11c32 事件 5 包含的基本事件总数为c11c42 事件 6 包含的基本事件总数为c11c52 从而有 随机变量 的分布列为 点评 按求分布列的步骤写分布列 随机取出3个球的最大号码 的所有可能取值为3 4 5 6 3 对应事件 取出的3个球的编号为1 2 3 4 对应事件 取出的3个球中恰取到4号球和1 2 3号球中的2个 5 对应事件 取出的3个球中恰取到5号球和1 2 3 4号球中的2个 6 对应事件 取出的3个球中恰取到6号球及1 2 3 4 5号球中的2个 而要求其概率则要利用等可能事件的概率公式和排列组合知识来求解 从而获得 的分布列 求概率分布 分布列 的一般步骤为 1 可取哪些值 2 p k 的确定 利用必修教材第十章中排列 组合公式和第十一章中的等可能事件的概率公式或互斥事件 对立事件的概率公式或相互独立事件 独立重复试验的概率公式 3 列出分布列 一般用表格形式 4 检验分布列 用它的两条性质验算 类型三二项分布解题准备 在n次独立重复试验中 事件发生的次数为k的概率为p k cnkpk 1 p n k k 0 1 2 n 或x b n p 时事件发生的次数为k p x k cnkpk 1 p n k k 0 1 2 n 在x b n p 时 x的取值必须从0 1 2 直到n都能取到 典例3 某射手每次射击击中目标的概率是0 8 现在连续射击4次 求击中目标的次数x的概率分布列 分析 本题是一个独立重复试验问题 其击中目标的次数x的概率分布列属二项分布 可直接由二项分布得出 解析 在独立重复射击中 击中目标的次数x服从二项分布 x b n p 由已知 n 4 p 0 8 p x k c4k 0 8k 0 2 4 k k 0 1 2 3 4 p x 0 c40 0 80 0 2 4 0 0016 p x 1 c41 0 81 0 2 3 0 0256 p x 2 c42 0 82 0 2 2 0 1536 p x 3 c43 0 83 0 2 1 0 4096 p x 4 c44 0 84 0 2 0 0 4096 所以x的概率分布列为 点评 独立重复试验问题 随机变量x的分布服从二项分布 即x b n p 这里n是独立重复试验的次数 p是每次试验中某事件发生的概率 我们称 服从几何分布 并记g k p qk 1p 其中q 1 p k 1 2 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版电子商务平台产品展示与销售服务合同
- 2025版融资担保合同示范文本深度解读
- 2025版智能物流中心承包劳动合同书
- 2025版工程索赔居间服务合同样本
- 二零二五年度进口医疗器械质量检测与认证合同
- 二零二五年新能源项目劳务分包劳动合同样本
- 二零二五年度中餐厅承包经营合同示范文本
- 二零二五年度建筑工程收款中介服务协议范本
- 2025版房地产交易居间合同(含佣金支付)中英文
- 二零二五年度绿色建筑共同出资合伙经营合同书
- jgj592023安全检查标准完整版
- 鲁教版历史六年级上册全册课件(五四制)
- 关节松动技术-上肢关节松动术(运动治疗技术)
- 2024CSCO肿瘤患者静脉血栓防治指南解读
- 供应商改善计划表
- DB11-T 1253-2022 地埋管地源热泵系统工程技术规范
- 2022年临沧市市级单位遴选(选调)考试试题及答案
- JBT 11699-2013 高处作业吊篮安装、拆卸、使用技术规程
- 中专宿舍管理制度和方法
- 心态决定-切模板课件
- 精神科常见病小讲课
评论
0/150
提交评论