




已阅读5页,还剩64页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公用电话交换网公共交换电话网(Public Switched Telephone Network或简称PSTN是一种用于全球语音通信的电路交换网络,是目前世界上最大的网络,拥有用户数量大约是8亿。公共交换电话网主要由交换系统和传输系统两大部分组成,其中,交换系统中的设备主要是电话交换机,电话交换机也随着电子技术的发展经历了磁石式、步进制、纵横制交换机,最后到程控交换机的发展历程。传输系统主要由传输设备和线缆组成,传输设备也由早期的载波复用设备发展到SDH,线缆也由铜线发展到光纤。公共交换电话网最早是1876年由贝尔发明的电话开始建立的。PSTN已经经历了磁石交换、空分交换、程控交换、数字交换等等阶段,目前几乎全部是数字化的网络。 为了适应业务的发展,PSTN目前正处于满足语音、数据、图像等传送需求的转型时期,正在向NGN(Next Generation Network)、移动与固定融合的方向发展。PSTN中使用的技术标准由国际电信联合会(ITU)规定,采用E.163/E.164(通俗称作电话号码)进行编址。 编辑摘要有线电视忧 4分(内容专业) 编辑词条 CATV在搜搜百科中为本词条的同义词,已为您做自动跳转。摘要有线电视 名称:有线电视汉语拼音:yuxin dinsh英语:cable television (CATV) 编辑摘要目录-隐藏1. 1简介 2. 2历史 3. 3结构 4. 4费用和节目 编辑本段|回到顶部简介 有线电视是一种使用同轴电缆作为介质直接传送电视、调频广播节目到用户电视的一种系统。在加拿大、美国、欧洲、大部分亚太地区和许多亚洲国家十分普遍,尽管现在在许多南美、中东和非洲有线电视没有多大起色,因为在这些地区人烟稀少铺设电缆相当地不划算,特别是在南非所谓的“无线电缆”或者基于微波地系统得到应用,“直接到户”的卫星电视更是普遍。跟无线广播一样,许多的频道可以使用不同的频率互不干扰的在一根电缆中传送。电视的调谐器、录像机或者收音机能够从混合信号里把一个频道选出来 ISDN 电话综合业务数字网(Integrated Services Digital Network,ISDN)是一个数字电话网络国际标准,是一种典型的电路交换网络系统。它通过普通的铜缆以更高的速率和质量传输语音和数据。ISDN是欧洲普及的电话网络形式。GSM移动电话标准也可以基于ISDN传输数据。因为ISDN是全部数字化的电路,所以它能够提供稳定的数据服务和连接速度,不像模拟线路那样对干扰比较明显。在数字线路上更容易开展更多的模拟线路无法或者比较困难保证质量的数字信息业务。例如除了基本的打电话功能之外,还能提供视频、图像与数据服务。ISDN需要一条全数字化的网络用来承载数字信号(只有0和1这两种状态),与普通模拟电话最大的区别就在这里。另外, ISDN也特指使用这项技术建立保持和断开电路交换的协议组 或是 isosorbide dinitrate二硝酸异山梨酯的缩写。DDN目录1. Digital Data Network - 数字数据网一、概述二、DDN网络介绍三、DDN网络的应用四、DDN网络的发展方向五、结束语1. Digital Data Network - 数字数据网数字数据网(Digital Data Network)是利用数字信道传输数据信号的数据传输网,它的传输媒介有光缆、数字微波、卫星信道以及用户端可用的普通电缆和双绞线。利用数字信道传输数据信号与传统的模拟信道相比,具有传输质量高、速度快、带宽利用率高等一系列优点。DDN向用户提供的是半永久性的数字连接,沿途不进行复杂的软件处理,因此延时较短,避免了分组网中传输时延大且不固定的缺点;DDN采用交叉连接装置,可根据用户需要,在约定的时间内接通所需带宽的线路,信道容量的分配和接续在计算机控制下进行,具有极大的灵活性,使用户可以开通种类繁多的信息业务,传输任何合适的信息。DDN以光缆为中继干线,其基本单位是节点(node),每个节点具备主控模块,中继模块,用户模块及其他功能块,支持速率为16kbs,8kbS等话音和高于2Mb/s的图像信号的传输。一、概述计算机通信技术层出不穷,国民经济的飞速发展,金融、证券、海关、外贸等集团用户和租用数据专线的部门、单位大幅度增加,数据库及其检索业务也迅速发展,现代社会对电信业务的依赖性越来越强。数字数据网DDN(Digital Data Network)就是适合这些业务发展的一种传输网络。它是将数万、数十万条以光缆为主体的数字电路,通过数字电路管理设备,构成一个传输速率高、质量好,网络时延小,全透明、高流量的数据传输基础网络。 什么是DDN?它是利用数字信道传输数据信号的数据传输网。它的主要作用是向用户提供永久性和半永久性连接的数字数据传输信道,既可用于计算机之间的通信,也可用于传送数字化传真,数字话音,数字图像信号或其它数字化信号。永久性连接的数字数据传输信道是指用户间建立固定连接,传输速率不变的独占带宽电路。半永久性连接的数字数据传输信道对用户来说是非交换性的。但用户可提出申请,由网络管理人员对其提出的传输速率、传输数据的目的地和传输路由进行修改。网络经营者向广大用户提供了灵活方便的数字电路出租业务,供各行业构成自己的专用网。 二、DDN网络介绍DDN网络的结构 DDN网是由数字传输电路和相应的数字交叉复用设备组成。其中,数字传输主要以光缆传输电路为主,数字交叉连接复用设备对数字电路进行半固定交叉连接和子速率的复用。 DTE: 数据终端设备-接入DDN网的用户端设备可以是局域网,通过路由器连至对端,也可以是一般的异步终端或图像设备,以及传真机、电传机、电话机等。DTE和DTE之间是全透明传输。 DSU: 数据业务单元-可以是调制解调器或基带传输设备,以及时分复用、语音/数字复用等设备。 DTE和DSU主要功能是业务的接入和接出。 NMC: 网管中心-可以方便地进行网络结构和业务的配置,实时地监视网络运行情况,进行网络信 息、网络节点告警、线路利用情况等收集、统计报告。 DDN网络层次示意图 按照网络的基本功能DDN网又可分为核心层、接入层、用户接口层。 核心层:以2M电路,构成骨干节点核心,执行网络业务的转接功能,包括帧中继业务的转接功能。 接入层:为DDN各类业务提供子速率复用和交叉连接,帧中继业务用户接入和本地帧中继功能,以及压缩话音/G3传真用户入网。 用户接口层:为用户入网提供适配和转接功能。如小容量时分复用设备等。 DDN网特点 (1)传输速率高: 在DDN网内的数字交叉连接复用设备能提供2Mbps或N64Kbps(2M)速率的数字传输信道。 (2)传输质量较高: 数字中继大量采用光纤传输系统,用户之间专有固定连接,网络时延小。 (3)协议简单: 采用交叉连接技术和时分复用技术,由智能化程度较高的用户端设备来完成协议的转换,本身不受任何规程的约束,是全透明网,面向各类数据用户。 (4)灵活的连接方式: 可以支持数据、语音、图像传输等多种业务,它不仅可以和用户终端设备进行连接,也可以和用户网络连接,为用户提供灵活的组网环境。 (5)电路可靠性高: 采用路由迂回和备用方式,使电路安全可靠。 (6)网络运行管理简便: 采用网管对网络业务进行调度监控,业务的迅速生成。 中国公用数字数据网(CHINADDN)的网络现状 中国公用数字数据骨干网(CHINADDN)于1994年正式开通,并已通达全国地市以上城市及部分经济发达县城。它是由中国电信经营的、向社会各界提供服务的公共信息平台。 CHINADDN网络结构可分为国家级DDN、省级DDN、地市级DDN。国家级DDN网(各大区骨干核心)主要功能是建立省际业务之间的逻辑路由,提供长途DDN业务以及国际出口。省级DDN(各省)主要功能是建立本省内各市业务之间的逻辑路由,提供省内长途和出入省的DDN业务。地市级DDN(各级地方)主要是把各种低速率或高速率的用户复用起来进行业务的接入和接出,并建立彼此之间的逻辑路由。这样,把国内、国外用户通过DDN专线互相传递信息。各级网管中心负责用户数据的生成,网络的监控、调整,告警处理等维护工作。 三、DDN网络的应用DDN网络提供的业务 由于DDN网是一个全透明网络,能提供多种业务来满足各类用户的需求。 提供速率可在一定范围内(200bit/s2Mbit/s)任选的信息量大实时性强的中高速数据通信业务。如局域网互连、大中型主机互连、计算机互联网业务提供者(ISP)等。 h 为分组交换网、公用计算机互联网等提供中继电路。 h 可提供点对点、一点对多点的业务适用于金融证券公司、科研教育系统、政府部门租用DDN专线组建自己的专用网。 h 提供帧中继业务,扩大了DDN的业务范围。用户通过一条物理电路可同时配置多条虚连接。 h 提供语音、G3传真、图像、智能用户电报等通信。 h 提供虚拟专用网业务。大的集团用户可以租用多个方向、较多数量的电路,通过自己的网络管理工作站,进行自己管理,自己分配电路带宽资源,组成虚拟专用网。 DDN网络在计算机联网中的应用 DDN作为计算机数据通信联网传输的基础,提供点对点、一点对多点的大容量信息传送通道。如利用全国DDN网组成的海关、外贸系统网络。各省的海关、外贸中心首先通过省级DDN网,出长途中继,到达国家DDN网骨干核心节点。由国家网管中心按照各地所需通达的目的地分配路由,建立一个灵活的全国性海关外贸数据信息传输网络。并可通过国际出口局,与海外公司互通信息,足不出户就可进行外贸交易。 此外,通过DDN线路进行局域网互连的应用也较广泛。一些海外公司设立在全国各地的办事处在本地先组成内部局域网络,通过路由器、网络设备等经本地、长途DDN与公司总部的局域网相连,实现资源共享和文件传送、事务处理等业务。 DDN网在金融业中的应用 DDN网不仅适用于气象、公安、铁路、医院等行业,也涉及到证券业、银行、金卡工程等实时性较强的数据交换。 通过DDN网将银行的自动提款机(ATM)连接到银行系统大型计算机主机。银行一般租用64Kbps DDN线路把各个营业点的ATM机进行全市乃至全国连网。在用户提款时,对用户的身份验证、提取款额、余额查询等工作都是由银行主机来完成的。这样就形成一个可靠、高效的信息传输网络。 通过DDN网发布证券行情,也是许多券商采取的方法。证券公司租用DDN专线与证券交易中心实行联网,大屏幕上的实时行情随着证券交易中心的证券行情变化而动态地改变,而远在异地的股民们也能在当地的证券公司同步操作,来决定自己的资金投向。 DDN网在其它领域中的应用 DDN网作为一种数据业务的承载网络,不仅可以实现用户终端的接入,而且可以满足用户网络的互连,扩大信息的交换与应用范围。在各行各业、各个领域中的应用也是较广泛的。如无线移动通信网利用DDN联网后,提高了网络的可靠性和快速自愈能力。七号信令网的组网,高质量的电视电话会议,今后增值业务的开发,都是以DDN网为基础的。 四、DDN网络的发展方向网络设备在不断地更新换代,人们对新技术的应用不仅仅停留在单一网络的话音或数据传输平台。多媒体通信的应用正在普及。视频点播(IP/TV)、电子商务(E-Business)、IP-Phone、电子购物等新应用正在推广。这些应用对网络的带宽、时延、传输质量等提出更高的要求。DDN独享资源,信道专用将会造成一部分网络资源的浪费,并且对于这些新技术的应用又会带来带宽显得太窄等问题。因此,DDN网络技术也要不断地向前发展。从建立现代化网的需要来看,现有DDN的功能应逐步予以增强。如为用户提供按需分配带宽的能力;为适应多种业务通信与提高信道利用率,应考虑统计复用;提高网管系统的开放性及用户与网络的交互作用能力;可以采用提高中继速率的办法,提高目前节点之间2Mbps的中继速率;相应的用户接入层速率也可大大提高,以适应新技术在DDN网络中的高带宽应用;可以使DDN网络平台成为一个多业务平台。除了目前已有的帧中继延伸业务和话音交换、G3传真业务外,还要采用最先进的设备和技术不断改造和完善DDN网,引入传输与交换、传输与接入等方面的变革,产生出具有交换型虚电路的DDN设备。积极地开展增值网服务,如数据库检索、可视图文等服务。由简单的电路或端口出租型向信息传递服务转变,为信息社会的发展做出更深层次的贡献。 五、结束语DDN网络把数据通信技术、数字通信技术、光纤通信技术、数字交叉连接技术和计算机技术有机地结合在一起。通过发展,DDN应用范围从单纯提供端到端的数据通信扩大到能提供和支持多种通信业务,成为具有众多功能和应用的传输网络。我们要顺应发展潮流,积极追踪新技术的发展,扩大网络服务对象,搞好网络的建设管理,最大限度地发挥网络优势。2. Distributed Data Network - 分布式数据网 FR1. Full Rate - 全速率编解码2. Frame Relay - 帧中继 Frame Relay的缩写,是一种以帧为数据单位的传输模式。帧中继(FR)是基于光纤数字传输和用户设备智能化、简化X.25 网络节点协议功能的一种快速分组交换技术。与 X.25 相比FR 更适合对速率和实时性要求更高的数据应用业务。 帧中继使用了统计复用技术,是点对多点的通信服务。帧中继是一种高性能的WAN协议,它运行在OSI参考模型的物理层和数据链路层。帧中继数据传输协议只保留了物理层和数据链路层的核心层的功能。数据以链路层的格式在网络中转发。 帧中继的用户的接入速率灵活。 帧中继采用统计复用技术,允许用户占用其它的空闲带宽来享受高于承诺的速率服务,不但充分利用物理媒介的传输带宽对突发性数据作出良好的响应,而且可以大大简化网络拓扑结构,降低硬件成本。对企业来说,帧中继连接是最经济的方式之一。通过帧中继点对多点连接,企业可租用足够的带宽来满足与各个分部进行高效、经济的通信连接,并且在业务量要求增加的同时可以很容易得到扩展。适用于数据通信量较大,信息传输量突发性较强,时延小的业务。是企业LAN连接到WAN的最佳选择。WDMWavelength Division Multiplexing - 波分复用 把不同波长的光信号复用到一根光纤中进行传送(每个波长承载一个TDM 电信号)的方式统称为波分复用。波分复用是一种光纤传输技术,这种技术在一根光纤上使用不同的波长传输多种光信号。现在,在为远程通信设计的高端WDM系统中,每种光信号(通常是指一个信道或一种波长)最多可以达到25Gps或10Gbps的传输速率。当前的系统能够支持32到64个信道,厂商承诺将在不久的将来提供支持96信道或128信道的系统。这将使得一根光纤就能够传送几百Gps的信息。密集波分复用(DWDM)一词经常被用来描述支持巨大数量信道的系统,在这里,“密集”没有明确的定义。相反,在一根光纤上使用两个或者四个信道有时也被称为WDM。WDM光传输技术简介波分复用(WDM)是光纤通信中的一种传输技术,它利用了一根光纤可以同时传输多个不同波长的光载波的特点,把光纤可能应用的波长范围划分成若干个波段,每个波段用作一个独立的通道传输一种预定波长的光信号。通信系统的设计不同,每个波长之间的间隔宽度也有差别,按照通道间隔差异,WDM可以细分为W-WDM、M-WDM、D-WDM。我们可以将一根光纤看作是一个多车道的公用道路,传统的TDM系统只不过利用了这条道路上的一条车道,而使用D-WDM技术,类似于利用公用道路上尚未使用的车道,以获取光纤中未开发的巨大传输能力。波分复用技术的发展波分复用技术在光纤通信出现伊始就出现了。从1995年开始,WDM发展进入了快车道,Lucent率先推出了8*2.5G波分复用系统,Ciena推出了16*2.5G系统。我国已完成了4*2.5G的现场实验,8*2.5G实验系统已通过签定。WDM发展迅速的主要原因在于:(1)光电器件的迅速发展。(2)TDM 10Gb/s面临着电子元器件响应时间的挑战。(3)光纤色散和偏振模色散限制了10Gb/s的传输。90年代初,EDFA(掺铒光纤放大器)的迅速商用化解决了WDM复用器带来的插入损耗问题。EDFA能提供的功率增益约为40dB,更重要的是,EDFA放大的波长窗口,足以容纳很多路相互间隔的不同波长一同得到功率增益,这对波分复用(WDM)系统的应用非常有益。波分复用系统目前,各厂家的波分复用系统基本分为两类:集成系统和开放系统。集成系统的同步数字传输系列(SDH)终端具有满足G.692的光接口、标准的光波长、满足长距离的光源。开放系统在波分复用器前端加入了波长转移单元OUT,将当前SDH的G.957接口波长转换为G.692的标准波长光接口。波分复用技术及器件波长转移单元OUT从SDH终端送来的光信号,经过光-电-光转移,将特定波长信号送入合波器(OMU)。在WDM系统中,波长稳定的必要性表现在以下三个方面:(1)减小相邻通路间的干扰。(2)提高系统性能。(3)从一定程度上降低对波分的要求。对OUT的使用提出了两种技术选择:只作为波长转换器,无再生中继器功能的OUT应用。作为再生中继器功能的OUT应用。波分复用器件光合波器用于传输系统的发送端,是一种具有多个输入端口和一个输出端口的器件。光分波器用于传输系统的接收端,正好与光合波器相反,它具有一个输入端口和多个输出端口,将 光放大器可以作为前置放大器、线路放大器、功率放大器,是光纤通信中的关键部份之一。目前研制的光放大器分为光纤放大器(OFA)和半导体光放大器(SOA)两大类。光纤放大器又有掺铒光纤放大器(EDFA)、掺铒光纤放大器(PDFA)、掺铌光纤放大器(NDFA)。其中,EDFA的性能优越,已经在WDM实验系统、商用系统中广泛应用。EDFA包括三个部分:泵光源、光耦合器、掺铒石英光纤。其特点是:(1)有较宽的增益带宽。(2)能提供较高的增益,噪声系数小。(3)泵浦波长为980nm和1480nm,与半导体激光器的波长相适应。(4)与传输光纤的耦合效率高。(5)输入信号过大时,EDFA的增益饱和,输出功率趋于一个有限的固定值。(6)可透明地实现放大,不必考虑信号的速率及调制方式,而且可以将各个通路的信号一起放大。SONETSynchronous Optical Network - 同步光纤网SONET是Bellcore于八十年代中期首先提出的用光导纤维传输的物理层标准。它被ANSI标准化并被CCITT推荐在全世界推广。我们可以用看待Ethernet双绞线局域网作为机构网通信系统的同样观点,来看待SONET作为一个全球性通信系统的物理网。这是一种潜在的全球性网络,在光纤上具有标准的数据传输率,并在世界范围内被广泛接受。SONET使世界各电话公司融为一体。SONET定义了同步和等时(时间敏感数据,如实时视频)信息的传输。用SONET,电信局就可以为客户提供一种方法开始在城市级最终在全球级建造快速网络。这是因为SONET为电信局提供了一种途径在全球范围内互连它们的通信设备。因为国际性数字信息传输率各不相同,这阻碍了全球通信系统的发展。例如美国的DSI使用1544Mbps,而欧洲的对应系统E1使用2048Mbps。SONET规定了不同级别的数字传输率,如表S-1所示。SONET制定了传输信号的光导纤维网,广域网技术如SMDS和ATM可在其上运行。由于采用了信元中继技术,而不是变长帧技术,因此很容易提高SONET网上的传输率,详见“Cell Relay 信元中继”条目。SONET有如下规定:传输率、光纤接口、操作和维护。表S-1所示的全球一致的分级光信号传输率。同步电路上的多路复用通道。这种结构提供了一个方法能准确地知道帧被定位在哪一个具体的通道上并且可以取出这些帧,而不用分路全部的多路传送信号。这样,网上有不同类型的通道(低速和高速),用户可进行多种路由选择。光导纤维传输标准允许不同厂商产品和通信公司的系统互连。组成SONET的电缆铺设于SONET多路复用设备之间。SONET规定了光纤电缆和发生光的规范,另外还包括数据的多路传送和帧的生成。SONET信号 以同步数据流形式运载数据和控制信息。控制信息被嵌入信号中并被看作是辅助操作(OVERHEAD)。SONET信号的辅助操作包括下面几部分:分段(section)辅助操作处理帧生成和差错监控。线路上的所有设备都将使用这个特性。线路(line)辅助操作用于监控线路状态。路径(path)辅助操作用于控制网上端点(路径终端设备)间的信号传送和差错监控。SONET规范也规定了低速信号如T1/E1和T3/E3是如何被插入同步传输的。SONET服务突破了T3(45Mbps)的限制。其基本的光导传输率518Mbps相当于一个T3线路或28个T1线路。高档OC-48光导载波可相当于1344个T1或48个T3线路。最初,OC-3传输率将提供客户对电信局的服务,九十年代高传输率的应用将会增长。光缆提供极大的带宽,这将使广域网的价格下降到人们可承受的范围内。很多公司将建网使得远程用户与本地用户拥有同样的数据访问速度,以增强远程用户通信和竞争的能力。铜线不能提供光缆那样的可扩充性,因为提供同样的带宽需要太多的铜线。相关条目:Asynchronous Transfer Mode异步传输模式;Carrier电信局,通信公司;Cell Relay 信元中继;Fiber-Optic Cable光(纤电)缆;Telecommunication电信,远程通信;Wide Area Network广域网SONET/SDH1985年,Bellcore提出SONET(Synchronous Optical Network同步光纤网)标准,美国国家标准协会(ANSI)通过 一系列有关SONET标准.1989年,国际电报电话咨询委员会CCITT接受SONET概念制定了SDH(Synchronous Digital Hierarchy,同步数字系列)标准,使之成为不仅适于光纤也适于微波和卫星传输的通用技术体制,与SONET有细微差别, SDH/SONET定义了一组在光纤上传输光信号的速率和格式,通常统称为光同步数字传输网,是宽带综合数字网B-ISDN的基础之一.SDH/SONET采用TDM技术,是同步系统,由主时钟控制,精度10-9).两者都用于骨干网传输.是对沿袭应用的准同步数字系列PDH (Plesiochronous Digital Hierarchy)的一次革命.SONET多用于北美和日本,SDH多用于中国和欧洲. 1.STM-1/4/16/64是不是一种速率级别标准? 是,由CCITT制定的SDH optical速率级别2.SDH信号标准速率等级:STM-1为155.52M,STM-4为622.08M,STM-16为2488.32M,STM-64为9553.28M, STM-256为40G,还有别的STM标准吗? 有,STM-1,3,4,6,8,12,16,64,256.以STM-1的倍数递增.3.OC-192是什么东西的速率标准?对应具体速率是多少?还有其他什么OC速率标准? OC-192是SONET的optical速率标准,相当于SONET的Electrical STS-192或SDH的optical STM-64, 即10Gbps.其他oc标准还有oc-1,oc-3,oc-9,oc-12,oc-18,oc-24,oc-36,oc-48,oc-192等,以oc-1的倍数递增.4.SONET速率为51.84M-9.953G,也像SDH一样按某种标准分级吗?,PDH与WDM的速率上下限分别是多少,像SDH一样按某种标准分级吗? SDH进行速率分级,有Optical STM-1标准 SONET也进行速率分级,分Electrical STS-1和Optical OC-1标准 PDH速率小于565Mbps,具体速率等级如下: PDH复接等级: 基 群: 2.048Mb/s 含30路数字电话 二次群: 8.448Mb/s 含4个基群 三次群: 32.368Mb/s 含4个二次群 四次群: 139.264Mb/s 含4个三次群 WDM系统使用不同的波长(在1550nm附近),可以承载多个通路的信息,每条通路速率可以高达2.5Gbps或10Gbps。第一代WDM系统支持4到16个波长,每个波长通路的速率为2.5Gbps;第二代WDM系统现在能支持32到40个波长,预计能达到100个波长;目前已有能支持1Tbps容量(100个10Gbps通路)的WDM实验系统在进行演示 DWDM实验室水平为:100*10Gb/s(100波,每波10Gb/s),中继距离400km;30*40Gb/s(30波,每波40Gb/s),中继距离85km;64*5Gb/s(64波,每波5Gb/s),中继距离720km。商用水平为320Gb/s,商用系统的传输能力仅是单根光纤可能传输容量(数Tb/s)的1/1005.广域网发展PDH-SDH/SONET-WDM对吗,这些都是使用光纤通信技术吗?PDH/SDH/WDM到底是指一种协议,还是一种传输介质,还是一种传输技术,还是一种传输设备,还是一种.?(工作在7层协议的哪一层?) PDH-SDH/SONET-WDM是对的,基本上使用光纤通信技术,但不是全部,如SDH还可使用微波和卫星传送. PDH/SDH/WDM规定了光信号在光纤上传输的速率和格式,其不是一种协议(光纤上可以跑协议吗?),不是一种传输介质(介质是光纤),它是一种传输技术,也通指PDH/SDH/WDM上所使用的各种设备.6. 同步数字序列SDH 是由一些SDH网元(NE)组成,在光纤上进行同步信息传输、复用和交叉连接的网络 SDH有四个网元:终端复用器TM、再生中继器REG、分扦复用器ADM、和同步数字交叉连接设备DXC,(是一种兼有复用、配线、保护/恢复、监控和网管多种功能的设备, 其常用配置:DXC4/4速率为140Mb/s或155.52Mb/s,DXC4/1速率为2Mb/s)注意:SDH是一种物理传输方式 、 IP网络是一种网络连接模式、 IP ON SDH 即POS是让IP在SDH的网上跑, 这三者的概念要分清。Ethernet目录以太网的分类和发展拓扑结构传输介质接口的工作模式历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为以太网:局域计算机网络的分布式包交换技术的文章。1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台。当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院 MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。以太网(Ethernet)。指的是由Xerox公司创建并由Xerox,Intel和DEC公司联合开发的基带局域网规范。以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE8023系列标准相类似。 它不是一种具体的网络,是一种技术规范。 以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。 以太网的分类和发展一、标准以太网开始以太网只有10Mbps的吞吐量,使用的是CSMACD(带有碰撞检测的载波侦听多路访问)的访问控制方法,这种早期的10Mbps以太网称之为标准以太网。以太网主要有两种传输介质,那就是双绞线和同轴电缆。所有的以太网都遵循IEEE 802.3标准,下面列出是IEEE 802.3的一些以太网络标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。 10Base5 使用粗同轴电缆,最大网段长度为500m,基带传输方法; 10Base2 使用细同轴电缆,最大网段长度为185m,基带传输方法; 10BaseT 使用双绞线电缆,最大网段长度为100m; 1Base5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps; 10Broad36 使用同轴电缆(RG59U CATV),最大网段长度为3600m,是一种宽带传输方式; 10BaseF 使用光纤传输介质,传输速率为10Mbps; 二、快速以太网随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mpbs光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASETX、100BASET4、MII、中继器、全双工等标准进行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASET快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。 快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMACD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。 100Mbps快速以太网标准又分为:100BASETX 、100BASEFX、100BASET4三个子类。 100BASETX:是一种使用5类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用两对双绞线,一对用于发送,一对用于接收数据。在传输中使用4B5B编码方式,信号频率为125MHz。符合EIA586的5类布线标准和IBM的SPT 1类布线标准。使用同10BASET相同的RJ45连接器。它的最大网段长度为100米。它支持全双工的数据传输。 100BASEFX:是一种使用光缆的快速以太网技术,可使用单模和多模光纤(62.5和125um) 多模光纤连接的最大距离为550米。单模光纤连接的最大距离为3000米。在传输中使用4B5B编码方式,信号频率为125MHz。它使用MICFDDI连接器、ST连接器或SC连接器。它的最大网段长度为150m、412m、2000m或更长至10公里,这与所使用的光纤类型和工作模式有关,它支持全双工的数据传输。100BASEFX特别适合于有电气干扰的环境、较大距离连接、或高保密环境等情况下的适用。 100BASET4:是一种可使用3、4、5类无屏蔽双绞线或屏蔽双绞线的快速以太网技术。100Base-T4使用4对双绞线,其中的三对用于在33MHz的频率上传输数据,每一对均工作于半双工模式。第四对用于CSMA/CD冲突检测。在传输中使用8B6T编码方式,信号频率为25MHz,符合EIA586结构化布线标准。它使用与10BASET相同的RJ45连接器,最大网段长度为100米。 三、千兆以太网千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。 千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M或100M的以太网很好地配合工作。升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地投资保护。 为了能够侦测到64Bytes资料框的碰撞,Gigabit Ethernet所支持的距离更短。Gigabit Ethernet 支持的网络类型,如下表所示: 传输介质 距离 1000BaseCX Copper STP 25m 1000BaseT Copper Cat 5 UTP 100m 1000BaseSX Multi-mode Fiber 500m 1000BaseLX Single-mode Fiber 3000m 千兆以太网技术有两个标准:IEEE802.3z和IEEE802.3ab。IEEE802.3z制定了光纤和短程铜线连接方案的标准。IEEE802.3ab制定了五类双绞线上较长距离连接方案的标准。 1. IEEE802.3z IEEE802.3z工作组负责制定光纤(单模或多模)和同轴电缆的全双工链路标准。IEEE802.3z定义了基于光纤和短距离铜缆的1000Base-X,采用8B/10B编码技术,信道传输速度为1.25Gbit/s,去耦后实现1000Mbit/s传输速度。 IEEE802.3z具有下列千兆以太网标准: 1000Base-SX 只支持多模光纤,可以采用直径为62.5um或50um的多模光纤,工作波长为770-860nm,传输距离为220-550m。 1000Base-LX 多模光纤:可以采用直径为62.5um或50um的多模光纤,工作波长范围为1270-1355nm,传输距离为550m。 单模光纤:可以支持直径为9um或10um的单模光纤,工作波长范围为1270-1355nm,传输距离为5km左右。 1000Base-CX 采用150欧屏蔽双绞线(STP),传输距离为25m。 2. IEEE802.3ab IEEE802.3ab工作组负责制定基于UTP的半双工链路的千兆以太网标准,产生IEEE802.3ab标准及协议。IEEE802.3ab定义基于5类UTP的1000Base-T标准,其目的是在5类UTP上以1000Mbit/s速率传输100m。 IEEE802.3ab标准的意义主要有两点: (1) 保护用户在5类UTP布线系统上的投资。 (2) 1000Base-T是100Base-T自然扩展,与10Base-T、100Base-T完全兼容。不过,在5类UTP上达到1000Mbit/s的传输速率需要解决5类UTP的串扰和衰减问题,因此,使IEEE802.3ab工作组的开发任务要比IEEE802.3z复杂些四、万兆以太网万兆以太网规范包含在 IEEE 802.3 标准的补充标准 IEEE 802.3ae 中,它扩展了 IEEE 802.3 协议和 MAC 规范使其支持 10Gb/s 的传输速率。除此之外,通过 WAN 界面子层(WIS:WAN interface sublayer),10千兆位以太网也能被调整为较低的传输速率,如 9.584640 Gb/s (OC-192),这就允许10千兆位以太网设备与同步光纤网络(SONET) STS -192c 传输格式相兼容。 10GBASE-SR 和 10GBASE-SW 主要支持短波(850 nm)多模光纤(MMF),光纤距离为 2m 到 300 m 。10GBASE-SR 主要支持“暗光纤”(dark fiber),暗光纤是指没有光传播并且不与任何设备连接的光纤。10GBASE-SW 主要用于连接 SONET 设备,它应用于远程数据通信。 10GBASE-LR 和 10GBASE-LW 主要支持长波(1310nm)单模光纤(SMF),光纤距离为 2m 到 10km (约32808英尺)。10GBASE-LW 主要用来连接 SONET 设备时,10GBASE-LR 则用来支持“暗光纤”(dark fiber)。 10GBASE-ER 和 10GBASE-EW 主要支持超长波(1550nm)单模光纤(SMF),光纤距离为 2m 到 40km (约131233英尺)。10GBASE-EW 主要用来连接 SONET 设备,10GBASE-ER 则用来支持“暗光纤”(dark fiber)。 10GBASE-LX4 采用波分复用技术,在单对光缆上以四倍光波长发送信号。系统运行在 1310nm 的多模或单模暗光纤方式下。该系统的设计目标是针对于 2m 到 300 m 的多模光纤模式或 2m 到 10km 的单模光纤模式。 以太网的连接 拓扑结构总线型:所需的电缆较少、价格便宜、管理成本高,不易隔离故障点、采用共享的访问机制,易造成网络拥塞。早期以太网多使用总线型的拓扑结构,采用同轴缆作为传输介质,连接简单,通常在小规模的网络中不需要专用的网络设备,但由于它存在的固有缺陷,已经逐渐被以集线器和交换机为核心的星型网络所代替。 星型:管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的网线、对核心设的可靠性要求高。采用专用的网络设备(如集线器或交换机)作为核心节点,通过双绞线将局域网中的各台主机连接到核心节点上,这就形成了星型结构。星型网络虽然需要的线缆比总线型多,但布线和连接器比总线型的要便宜。此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。 传输介质以太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。 接口的工作模式以太网卡可以工作在两种模式下:半双工和全双工。 半双工:半双工传输模式实现以太网载波监听多路访问冲突检测。传统的共享LAN是在半双工下工作的,在同一时间只能传输单一方向的数据。当两个方向的数据同时传输时,就会产生冲突,这会降低以太网的效率。 全双工:全双工传输是采用点对点连接,这种安排没有冲突,因为它们使用双绞线中两个独立的线路,这等于没有安装新的介质就提高了带宽。例如在上例的车站间又加了一条并行的铁轨,同时可有两列火车双向通行。在双全工模式下,冲突检测电路不可用,因此每个双全工连接只用一个端口,用于点对点连接。标准以太网的传输效率可达到5060的带宽,双全工在两个方向上都提供100的效率。 以太网的工作原理 以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。以太网的工作过程如下: 当以太网中的一台主机要传输数据时,它将按如下步骤进行: 1、帧听信道上收否有信号在传输。如果有的话,表明信道处于忙状态,就继续帧听,直到信道空闲为止。 2、若没有帧听到任何信号,就传输数据 3、传输的时候继续帧听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送会返回到帧听信道状态。 注意:每台计算机一次只允许发送一个包,一个拥塞序列,以警告所有的节点) 4、若未发现冲突则发送成功,计算机所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。 帧结构 以太网帧的概述: 以太网的帧是数据链路层的封
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届内蒙古赤峰市化学九年级第一学期期末质量跟踪监视试题含解析
- 2026届山东省临沂市蒙阴县化学九上期中检测试题含解析
- 2026届山东省安丘市景芝中学化学九年级第一学期期中复习检测试题含解析
- 2026届重庆市开州区化学九上期末学业水平测试试题含解析
- 离婚协议中子女抚养费及教育保障详细约定书
- 离婚协议电子版起草与子女抚养权咨询合同
- 离婚协议签署后反悔处理与离婚后财产纠纷解决合同
- 夫妻离婚协议范本:债务分担与财产分配
- 铸铁工考试题库及答案
- 商业地产租赁合同补充协议:租金上涨与商业推广合作
- 人美版美术七年级上册第一单元《第2课 品篆刻之美》课件
- 宪法培训课件教学课件
- 华为全球培训中心
- 2023药品耗材集中带量采购知识标准培训模版课件
- 医院物业服务管理方案
- 主成分分析法(高教书苑)
- 2024年中级注册安全工程师《安全生产专业实务(道路运输安全)》真题及答案
- 凝中国心铸中华魂铸牢中华民族共同体意识-小学民族团结爱国主题班会课件
- 2023年宜宾市叙州区招聘社区专职工作者考试真题
- 劳务分包合同1正规范本
- 医疗机构消毒记录表清洁消毒日检查记录表
评论
0/150
提交评论