




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考22.1 用待定系数法求二次函数的解析式 教学目标: 知识技能利用已知点的坐标用待定系数法求二次函数的解析式 数学思考学生了解二次函数的一般式,顶点式,交点式三种形式 问题解决学生了解二次函数的三种形式,如何灵活的选择解析式 情感态度在求解过程中,体会解决问题的方法,培养学生思维的灵活性重难点:重点:待定系数法求二次函数的解析式 难点:选择恰当的解析式求法教学准备: 教师准备:制作课件,精选习题 学生准备:复习有关知识,预习本节课内容教学过程:一、忆(回顾旧知)1、顶点式 y=a(x-h) +k 的五种性质。 2、一般式 y=ax2+bx+c 的五种性质。【设计意图】使学生更加熟练一般式和顶点式,因为它是本章的重点。二、导(导入新课) 已知一次函数经过点(1,3)和(-2,-12),求这个一次函数的解析式。解:设这个一次函数的解析式为y=kx+b, 因为一次函数经过点(1,3)和(-2,-12), 所以解得 k=5,b=-2一次函数的解析式为y=5x-2.【设计意图】由简单到复杂,由已知到未知,由旧知到新知,符合学生认知的规律。三、求(求解析式)例1 已知一个二次函数的图象过点(1,10)、(1,4)、(2,7)三点,求这个函数的解析式.解:设所求的二次函数为y=ax2+bx+c由已知得:解方程得:a=2, b=-3, c=5因此:所求二次函数是:y=2x2-3x+5本题小结:求二次函数y=ax2+bx+c的解析式,关键是求出待定系数a,b,c的值。 由已知条件(如二次函数图像上三个点的坐标)列出关于a,b,c的方程组,并求出a,b,c,就可以写出二次函数的解析式。例2 已知抛物线的顶点为(1,3),与y轴的交点为(0,5),求抛物线的解析式。解:因为抛物线的顶点为(-1,-3),所以,设所求的二次函数的解析式为 y=a(x1)2-3因为点(0,-5 )在这个抛物线上,所以a-3=-5, 解得a=-2故所求的抛物线解析式为 y=2(x1)2-3即:y=2x2- 4x5 顶点式y=a(x-h)2+k(a、h、k为常数,a0).若已知抛物线的顶点坐标和抛物线上的另一个点的坐标时,通过设函数的解析式为顶点式y=a(x-h)2+k. 特别地,当抛物线的顶点为原点是,h=0,k=0,可设函数的解析式为y=ax2. 当抛物线的对称轴为y轴时,h=0,可设函数的解析式为y=ax2+k. 当抛物线的顶点在x轴上时,k=0,可设函数的解析式为y=a(x-h)2.例3 已知抛物线与X轴交于A(1,0),B(1,0)并经过点M(0,1),求抛物线的解析式?解:因为抛物线与x轴的交点为A(1,0),B(1,0) ,所以设所求的二次函数为y=a(x1)(x1)又 点M( 0,1 )在抛物线上 a(0+1)(0-1)=1解得: a=-1故所求的抛物线解析式为 y=- (x1)(x-1)即:y=x2+1 交点式y=a(x-x1)(x-x2).(a、x1、x2为常数a0) 当抛物线与x轴有两个交点为(x1,0),(x2,0)时,二次函数y=ax2+bx+c可以转化为交点式y=a(x-x1)(x-x2).因此当抛物线与x轴有两个交点为(x1,0),(x2,0)时,可设函数的解析式为y=a(x-x1)(x-x2),再把另一个点的坐标代入其中,即可解得a,求出抛物线的解析式。交点式y=a(x-x1)(x-x2). x1和x2分别是抛物线与x轴的两个交点的横坐标,这两个交点关于抛物线的对称轴对称,则直线 就是抛物线的对称轴.【设计意图】学生体会什么情况下用用一般式,顶点式,交点式。为下一节做了铺垫,难点提前。四、练(知识升华)有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m现把它的图形放在坐标系里(如图所示),求抛物线的解析式解法一:设抛物线的解析式为y=ax2bxc,根据题意可知抛物线经过(0,0),(20,16)和(40,0)三点 教师点评:通过利用给定的条件列出a、b、c的三元一次方程组,求出a、b、c的值,从而确定函数的解析式过程较繁杂。解法二:设抛物线为y=a(x-20)216 根据题意可知 点(0,0)在抛物线上, 所求抛物线解析式为 教师点评:通过利用条件中的顶点和过原点选用顶点式求解,方法比较灵活。 解法三:设抛物线为y=a(x-0)(x-40)根据题意可知 点(20,16)在抛物线上, 教师点评:选用两根式求解,方法灵活巧妙,过程也较简捷。 【设计意图】使学生在实际问题中体会解析式的求法,让学生独立思考,并求解析式,交流结果,让快速完成的同学体验成功的喜悦,出现问题的学生自查并反思、加深印象。五、结(知识小结)求二次函数解析式的一般方法:1.已知图象上三点或三对的对应值,(是)(非) (长 )(短) (大)( 小 ) (远)近 通常选择一般式2.已知图象的顶点坐标、对称轴、最值和另一个点的坐标 通常选择顶点式 棵 一棵棵 一棵棵高大的松树3.已知图象与x轴的两个交点的横坐标x1、x2和另一个点的 坐标 通常选择交点式确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式.鲜艳的花朵 甜甜的笑容 高高的灯笼【设计意图】提炼观点、知识升华六、链(链接中考)例一、寸 过 (过去 );巴 口 吧 ( 来吧 )。已知二次函数y=(m22)x24mx+n的图象的对称轴是直线x=2,且最高点在直线y=12x+1上,求这个二次函数的表达式. 木字旁:桃、树、林、机、桥变式练习:将上例中其它条件不变,“最高点”改为“顶点”求二次函数解析式 (分a0和a0两种情) 禾字旁:秀、香、和、秋【设计意图】知识拓展,提升难度,使不同的学生得到不同的发展。本节小结:我学会了_;我知道了_。( 三拼音节、 整体认读音节 )七、作(作业设计)必做题:设计求解析式(一般式、顶点式)元 且 几 生 昌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 激发数据要素创新潜能的策略及实施路径
- 英语句型学习突破教程
- 美的遇见作文800字8篇
- 出生日期与年度收入证明(6篇)
- 化学材料化学知识点详解及试题
- 想象作文语文书的自述350字(11篇)
- 不负青春作文高二范文7篇范文
- 公主家产品抽奖活动方案
- 公交公司植树节活动方案
- 与家人共度中秋节的温馨时刻作文(8篇)
- 法律文书写作能力测试题库及解答分析
- 2025合作合同范本:两人合伙协议书模板
- DB31/T 595-2021冷库单位产品能源消耗指标
- DB31/T 1204-2020标准先进性评价通用要求
- 2025年中国半球谐振陀螺仪行业市场前景预测及投资价值评估分析报告
- 2025年计算机Photoshop操作实务的试题及答案
- 合伙或养鸡协议书
- 2024-2030全球WiFi 6移动热点行业调研及趋势分析报告
- 2024年西安高新区公办学校教师招聘真题
- 2025年广东省广州市越秀区中考物理一模试卷(含答案)
- 2023-2024学年上海市浦东区八年级(下)期末数学试卷 (含答案)
评论
0/150
提交评论