




已阅读5页,还剩58页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 1二重积分 回忆定积分 设一元函数y f x 在 a b 可积 则 如图 其中 i xi xi 1 xi xi 1 xi 表小区间 xi xi 1 的长 f i xi表示小矩形的面积 设有一立体 其底面是xy面上的区域D 其侧面为母线平行于z轴的柱面 其顶是曲面z f x y 0 连续 称为曲顶柱体 若立体的顶是平行于xy面的平面 则平顶柱体的体积 底面积 高 如图 一 例 1 求曲顶柱体的体积V i 用曲线将D分成n个小区域D1 D2 Dn 每个小区域Di都对应着一个小曲顶柱体 如图 z f x y z f x y Di Di ii 由于Di很小 z f x y 连续 小曲顶柱体可近似看作小平顶柱体 i i Di 小平顶柱体的高 f i i 若记 i Di的面积 则小平顶柱体的体积 f i i i 小曲顶柱体体积 iii 因此 大曲顶柱体的体积 分割得越细 则右端的近似值越接近于精确值V 若分割得 无限细 则右端近似值会无限接近于精确值V 也就是 iv 其中Di的直径是指Di中相距最远的两点的距离 其中 i i Di i Di的面积 如图 1 平面薄板的质量M 当平面薄板的质量是均匀分布时 有 平面薄板的质量 面密度 面积 若平面薄板的质量不是均匀分布的 这时 薄板的质量不能用上述公式算 应如何算该薄板的质量M 2 非均匀分布物体的质量 用曲线将D分成n个小区域D1 D2 Dn 设一平面薄板 所占区域为D 面密度 x y 0连续 x y D 求该平面薄板的质量M i 如图 Di Di的面积记作 i Di 由于 x y 0连续 从而当Di很小时 x y 在Di上的变化不大 可近似看作 x y 在Di上是不变的 从而可用算均匀薄板的质量的方法算出Di这一小块质量的近似值 ii 即 i i Di 以 i i 作为Di这一小片薄板的面密度 从而 第i片薄板的质量mi i i i iii 故 平面薄板的质量 iv 1 定义设z f x y 是定义在有界闭区域D R2上的有界函数 将D任意分割成n个无公共内点的小区域Di I 1 2 n 其面积记为 i i i Di 作积 f i i i 二 二重积分的概念与性质 若对任意的分法和任意的取法 当 0时 和式 的极限存在且极限值都为I 则称f x y 在D上可积 记为f x y R D 并称此极限值I为 f x y 在D上的二重积分 记作 即 其中 称为二重积分符号 D称为积分区域 f x y 称为被积函数 d 称为面积元素 x y称为积分变量 和式 注1 定积分 二重积分 区别在将小区间的长度 xi换成小区域的面积 i 将一元函数f x 在数轴上点 i处的函数值f i 换成二元函数f x y 在平面上点 i i 处的函数值f i i 可见 二重积分是定积分的推广 注2 若将D用两族平行于x轴和y轴的直线分割 如图 则除边界上区域外 Di的面积 i xi yi 故也将二重积分写成 注3 可以证明若f x y 在D上连续 则f x y 在D上可积 若f x y 在D上有界 且在D内只有有限个不连续点 或只在有限条曲线上不连续 则f x y 可积 2 二重积分的性质 设D为有界闭区域 以下涉及的积分均存在 性质1 性质2 性质3 性质4 若在D上有f x y g x y 则 特别 i 若在D上f x y 0 则 ii 这是因为 f x y f x y f x y 积分后即得 性质5 若在D上m f x y M 则 设f x y C D 则 D 使得 性质6 性质7 3 二重积分的几何意义设x y在D上可积 则 i 当z f x y 0时 ii 当z f x y 0时 iii D1上曲顶柱体体积 D2上曲顶柱体体积 1 直角坐标系下二重积分的计算 由二重积分的几何意义知 当f x y 0时 如图 若点x处截面面积为A x 则体积 三 二重积分的计算 1 设积分区域D是由两条平行于y轴的直线x a x b及两条曲线y y1 x y y2 x 围成 如图 即 D y1 x y y2 x a x b 称为x 型区域 特别情形是 A B退缩成一点 E F退缩成一点 由几何意义知 以D为底的曲顶柱体体积V 如图 过点x0作平面x x0 截面是平面x x0上的 以z f x0 y 为曲边的曲边梯形 由定积分的几何意义 从而 故 右端称为先对y 再对x的二次积分 累次积分 计算原则 由里到外 即先将x看作常数 以y为积分变量 求里层积分 得到的结果是只含x 不含y的函数式 再求外层积分 以x为积分变量 注1 公式 虽是在条件f x y 0下得到的 但对一般的f x y 都成立 只须D是x 型区域即可 注2 习惯上常将右端的二次积分记作 即 2 类似 若D x1 y x x2 y c y d 称为y 型区域 则二重积分可化为先对x 再对y的二次积分 即 3 若D既是x 型区域 又是y 型区域 比如 则既可先对x积分 又可先对y积分 等等 当用某次序算二重积分不好算时 可改换积分次序 可能好算 此时 4 若D的形状较复杂 既不是x 型区域 也不是y 型区域 则可用一些平行于x轴和平行于y轴的直线将其分成若干块 使每一块或为x 型 或为y 型 分块积 如图 5 设D y1 x y y2 x a x b 为x 型区域 其中y2 x 为分段函数 如图 则 由于y2 x 是分段函数 里层积分上限无法确定用哪一个表达式 故应将D分成D1 D2 分块积分 6 不论是先对x积分 还是先对y积分 里层积分的上 下限总是曲线的函数表达式 而外层积分的上 下限是点的坐标 且上限 下限 称为从里到外 线 线 点 点 例1 为确定累次积分的上 下限 作与y轴同向的射线 从下至上穿过D 则y是由下方的曲线y x2变到上方的曲线y x的 解 先画区域D的图形 法1 先对y积分 里层积分的下限为x2 上限为x 由于该射线变化范围是 0 1 因此 外层积分下限为0 上限为1 即 法2 先对x积分 作与x轴同向射线 从左至右穿过D 则x是从左方曲线x y变到右方曲线y x2 即 故里层对x积分的下限为y 上限为 而该射线的变化范围是 0 1 故外层对y的积分下限为0 上限为1 例2 解 先画D的图形 先对x积分 作与x轴同向的射线穿过D 易知 x从左方曲线y x2即 右方曲线y x 2即x 2 y 而y 0 1 故 所以 原式 问 若先对y积分 情形怎样 例3 求 解 由于 是 积不出 的 怎么办 要改换积分次序 先画积分区域D的图形 由积分表达式知 D y x 1 0 y 1 画曲线x y和x 1 直线y 0 y 1 如图 故原式 由例2 例3知 选择适当的积分顺序 有时能使积分变得简便 易行 在作题时 当按某一顺序积分很难 或不可行时 可改换积分顺序试一试 例4 改换 解 写出D的表达式 画D的图形 改为先对x再对y的积分 例5 关于分块函数在D上的积分 其中D 0 x 1 0 y 1 解 积分区域如图 记f x y y x 且区域D1 y x和D2 y x分处在直线y x的上 下方 故 原式 注 分块函数的积分要分块 区域 来积 另外 带绝对值的函数是分块函数 在将二重积分化为二次积分的公式 右边的二次积分不是两个定积分之积 计算时必须由 里至外 这当然较繁琐 但在某些情形下 可将右端 化为两个定积分之积 例6 设D a x b c y d f x y f1 x f2 y 可积 则 比如 只须要求里层积分 的被积函数f2 y 和 上 下限都与x无关即可 关于利用对称性积分的问题 1 若D的图形关于x轴对称 i 若f x y f x y 其中点 x y 与 x y 关于x轴对称 即函数也关于x轴对称 ii 若f x y f x y 2 若D的图形关于y轴对称 i 若f x y f x y 其中 x y 是 x y 的关于y轴的对称点 ii f x y f x y 则 3 一般 若D关于平面上某直线l对称 对 x y D1 有关于l的对称点 x1 y1 D2 若f x y f x1 y1 则 若f x y f x1 y1 例7 1 易知 2 二重积分的换元法 定理1 设变换x g u v y u v 时uov平面上的有界闭区域D 一一对应地变成xoy平面上的有界闭区域D 且满足 若f x y 可积 则 1 x g u v y u v C1 D 3 用极坐标变换计算二重积分 变换x rcos y rsin 称为极坐标变换 其中0 r 0 2 或 D经极坐标变换后变成极坐标系下的区域D 因 称为 曲边三角形 或 曲边扇形 曲边的极坐标方程为r r D的最小极角为 最大极角为 此时 D 0 r r 从而 特别 y 0 x r r 称为 极点位于D的边界上 的情形 2 若积分区域D如图 即D包含极点 这相当于 在上图中让 0 而 增大2 D 0 r r 0 2 3 若积分区域D如图 即 极点在D外 而D是由两个 曲边扇形 相减而成 作以0为起点的射线过D 先遇到的曲边为r r1 后遇的曲边为r r2 最大 最小极角分别为 此时 D r1 r r2 例8 求 其中D x2 y2 1 解 一般 若D的表达式中含有x2 y2时 可考虑用极坐标积分 令x rcos y rsin 则 x2 y2 1的极坐标方程为r 1 由 2 D 0 r 1 0 2 另由几何意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 12137-2025气瓶气密性试验方法
- 巴中市消防救援支队 关于2025年度面向社会招录政府专职消防员(29人)备考考试题库附答案解析
- 2025年从旌阳区服务基层项目人员中公开考核招聘事业单位工作人员的备考考试题库附答案解析
- 2025安徽工商职业学院下半年招聘工作人员2人备考考试题库附答案解析
- 2025重庆医科大学附属绵阳医院绵阳市第三人民医院游仙分院招聘8人(四川)备考考试题库附答案解析
- 2025浙江台州市中心血站招聘编制外人员1人备考考试题库附答案解析
- 宜春市面向社会公开招聘市属国有企业员工的备考考试题库附答案解析
- 2025下半年国家矿山安全监察局黑龙江局事业单位招聘工作人员14人备考考试题库附答案解析
- 2025湖南娄底市双峰县直事业单位引进高学历(专门)人才补充11人考试备考题库及答案解析
- 哲学论文写作探索
- 2025年江苏省泰州市保安员理论考试题库及答案
- 2025托幼机构卫生保健人员考试题库(附答案)
- 申请增列护理学硕士专业学位授权点的必要性与可行性论证报告
- 文化遗产数字化保护与文化遗产数字化保护的公众认知与接受度研究报告001
- 《中级财务会计》课件-11收入、费用和利润
- 部编版(2024)七年级上册道德与法治第一单元 少年有梦 单元测试卷(含答案)
- 血液科抗感染病例汇报
- 耳鸣的健康教育
- 孕妇合理安全用药
- 第一章有理数(A卷)单元过关测验(含解析) 2025-2026学年人教版七年级数学上册
- 2025年中国底部填充胶粘剂市场调查研究报告
评论
0/150
提交评论