全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
为您服务教育网/24.1.3弧、弦、圆心角1. 通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系2. 运用上述三者之间的关系来计算或证明有关问题重点:圆的弧、弦、圆心角之间的关系定理难点:探索推导定理及其应用一、自学指导(10分钟)自学:自学教材P8384内容,回答下列问题探究:1顶点在_圆心_的角叫做圆心角,能够重合的圆叫做_等圆_;能够_重合_的弧叫做等弧;圆绕其圆心旋转任意角度都能够与原来的图形重合,这就是圆的_旋转性_2在同圆或等圆中,相等的圆心角所对的弧_相等_,所对的弦也_相等_3在同圆或等圆中,两个_圆心角_,两条_弦_,两条_弧_中有一组量相等,它们所对应的其余各组量也相等4在O中,AB,CD是两条弦,(1)如果ABCD,那么_,_AOBCOD_;(2)如果,那么_ABCD_,_AOBCOD;(3)如果AOBCOD,那么_ABCD_,_二、自学检测:学生自主完成,小组内展示,点评,教师巡视(6分钟)1如图,AD是O的直径,ABAC,CAB120,根据以上条件写出三个正确结论(半径相等除外)(1)_ACO_ABO_;(2)_AD垂直平分BC_;(3).2如图,在O中,ACB60,求证:AOBBOCAOC.证明:,ABAC.又ACB60,ABC为等边三角形,ABACBC,AOBBOCAOC.,第2题图),第3题图)3如图,(1)已知.求证:ABCD.(2)如果ADBC,求证:.证明:(1),ABCD.(2)ADBC,即.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果(7分钟)1O中,一条弦AB所对的劣弧为圆周的,则弦AB所对的圆心角为_90_点拨精讲:整个圆周所对的圆心角即以圆心为顶点的周角2在半径为2的O中,圆心O到弦AB的距离为1,则弦AB所对的圆心角的度数为_120_3如图,在O中,ACB75,求BAC的度数解:30.,第3题图),第4题图)4如图,AB,CD是O的弦,且AB与CD不平行,M,N分别是AB,CD的中点,ABCD,那么AMN与CNM的大小关系是什么?为什么?点拨精讲:(1)OM,ON具备垂径定理推论的条件(2)同圆或等圆中,等弦的弦心距也相等解:AMNCNM.ABCD,M,N为AB,CD中点,OMON,OMAB,ONCD,OMAONC,OMNONM,OMAOMNONCONM.即AMNCNM.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路(10分钟)1如图,AB是O的直径,COD35,求AOE的度数解:75.,第1题图),第2题图)2如图所示,CD为O的弦,在CD上截取CEDF,连接OE,OF,它们的延长线交O于点A,B.(1)试判断OEF的形状,并说明理由;(2)求证:.解:(1)OEF为等腰三角形理由:过点O作OGCD于点G,则CGDG.CEDF,CGCEDGDF.EGFG.OGCD,OG为线段EF的垂直平分线OEOF,OEF为等腰三角形(2)证明:连接AC,BD.由(1)知OEOF,又OAOB,AEBF,OEFOFE.CEAOEF,DFBOFE,CEADFB.在CEA与DFB中,AEBF,CEABFD,CEDF,CEADFB,ACBD,.点拨精讲:(1)过圆心作垂径;(2)连接AC,BD,通过证弦等来证弧等3已知:如图,AB是O的直径,M,N是AO,BO的中点CMAB,DNAB,分别与圆交于C,D点求证:.证明:连接AC,OC,OD,BD.M,N为AO,BO中点,OMON,AMBN.CMAB,DNAB,CMODNO90.在RtCMO与RtDNO中,OMON,OCOD,RtCMORtDNO.CMDN.在RtAMC和RtBND中,AMBN,AMCBND,CMDN,AMCBND.ACBD.点拨精讲:连接AC,OC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年南京航空航天大学经济与管理学院工作人员招聘备考题库及一套完整答案详解
- 2026年26届中国人民财产保险股份有限公司阳江市分公司招聘备考题库完整参考答案详解
- 2026年眉山职业技术学院公开考核招聘编制外工作人员14人备考题库及答案详解(易错题)
- 济南四建(集团)有限责任公司2025年招聘备考题库(国际公司市场开发岗)及答案详解(夺冠系列)
- 2026年南山实验教育集团白石洲学校面向全国选聘初中物理、历史教师备考题库及答案详解一套
- 2026黑龙江哈尔滨启航劳务派遣有限公司派遣到哈尔滨工业大学机电工程学院机械设计系招聘考试参考题库及答案解析
- 2026新疆博尔塔拉州博乐边合区丝路金盛建设工程有限公司招聘6人考试参考题库及答案解析
- 2026江苏苏州工业园区翰林幼儿园后勤辅助人员招聘1人笔试备考试题及答案解析
- 2026年甘肃省兰州颐康医院招聘医疗专业人员22人(长期招聘)考试备考试题及答案解析
- 2026年华亭市交通旅游开发有限责任公司招聘考试参考试题及答案解析
- 广东省部分学校2025-2026学年高三上学期9月质量检测化学试题
- 【道 法】期末综合复习 课件-2025-2026学年统编版道德与法治七年级上册
- 中国心力衰竭诊断和治疗指南2024解读
- 2025年国家工作人员学法用法考试题库(含答案)
- 祠堂修建合同范本
- 高处作业吊篮安装、拆卸、使用技术规程(2025版)
- 奢侈品库房管理
- TNAHIEM 156-2025 口内数字印模设备消毒灭菌管理规范
- 个人年度工作计划及职业发展规划-适用于各行各业
- 交通运输企业安全生产风险分级管控体系细则
- GB/T 14977-2025热轧钢板表面质量的一般要求
评论
0/150
提交评论