已阅读5页,还剩42页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 3空间几何体的表面积与体积1 3 1柱体 锥体 台体的表面积与体积 自学导引 1 了解多面体的平面展开图的概念 能画出多面体的展开图 2 了解棱柱 棱锥 棱台的概念 掌握它们的侧面展开图的图形 会用侧面展开图计算侧面积 3 掌握圆柱 圆锥 圆台的侧面展开图 会运用它们计算侧面积 4 掌握柱 锥 台的体积公式及其公式之间的相互联系 并会用这些公式计算它们的体积 5 经过图形的折叠与展开掌握平面图形与立体图形之间的变量与不变量的分析与辨别 体会事物之间可以在一定条件下互相转化的辩证唯物主义观点 课前热身 1 棱柱 棱锥 棱台是由多个 围成的几何体 它们的表面积就是各个面的面积的 2 圆柱 圆锥 圆台的侧面展开图分别是 它们的侧面积就是其侧面展开图的 3 如果柱体的底面积为s 高为h 则柱体的体积v 4 如果锥体的底面积为s 高为h 则锥体的体积v 平面图形 和 矩形 扇形 扇环 面积 sh 名师讲解 1 表面积公式 1 圆柱 如果圆柱的底面半径为r 母线长为l 那么圆柱的底面积为s底 r2 侧面积为s侧 2 rl 表面积为s表 s侧 2s底 2 rl 2 r2 2 r r l 2 圆锥 如果圆锥的底面半径为r 母线长为l 那么圆锥的底面积为 r2 侧面积为 rl 表面积s r2 rl r r l 3 圆台 圆台的上 下底面半径分别为r r 母线长为l 则其侧面积为 l r r 表面积为s r 2 r2 r l rl 2 体积公式 1 柱体 柱体的底面积为s 高为h 则v sh 2 锥体 锥体的体积等于与它等底等高的柱体的体积的 即v sh 3 台体 台体的上 下底面积分别为s s 高为h 则 3 求几何体的体积与表面积需注意的问题 1 圆柱 圆锥 圆台的侧面积分别是它们侧面展开图的面积 因此弄清侧面展开图的形状及几何量的大小 是解决有关问题的关键 2 计算柱体 锥体 台体的体积 关键是根据条件找出相应的底面面积和高 要充分运用多面体的有关截面及旋转体的轴截面 将空间问题转化为平面问题 典例剖析 题型一空间几何体的表面积 例1 已知棱长均为5 底面为正方形的四棱锥s abcd 如图 求它的侧面积 表面积 分析 要求棱锥的侧面积 应先弄清各侧面的形状 此棱锥各侧面均为边长为5的正三角形 表面积为侧面积和底面积之和 即s表面积 s侧 s底 解 四棱锥s abcd的各棱长均为5 各侧面都是全等的正三角形 设e为ab中点 则se ab s侧 4s sab 4 ab ses表面积 s侧 s底 25 25 25 1 规律技巧 求棱锥的表面积 可以先求侧面积 再求底面积 求侧面积 要清楚各侧面三角形的形状 并找出求其面积的条件 求底面积要清楚底面多边形的形状及求其面积的条件 变式训练1 在正方体abcd a1b1c1d1中 三棱锥d1 ab1c的表面积与正方体的表面积的比为 解析 如上图 三棱锥d1 ab1c的各面均是正三角形 其边长为正方体侧面对角线 设正方体的棱长为a 则面对角线长为 sd1 ab1c s正方体 答案 b 题型二空间几何体的体积 例2 如下图所示 在长方体abcd a b c d 中 截下一个棱锥c a dd 求棱锥c a dd 的体积与剩余部分的体积之比 分析 剩余部分几何体不是规则几何体 可利用长方体和棱锥体积的差来求得剩余部分的体积 解 已知长方体可以看成直四棱柱add a bcc b 设它的底面add a 面积为s 高为h 则它的体积为v sh 而棱锥c a dd 的底面积为 s 高是h 故棱锥c a dd 的体积为vc a dd 余下的体积是所以棱锥c a dd 的体积与剩余部分的体积之比为1 5 规律技巧 计算多面体的体积 基础仍是多面体中一些主要线段的关系 要求概念清楚 能根据条件 找出其底面及相应的高 变式训练2 已知正三棱台a1b1c1 abc的两底面边长分别为2 8 侧棱长等于6 求三棱台的体积v 解 在右图中 设c1d1 cd分别平分a1b1 ab o1 o为上 下两底面的中心 则o1o为棱台的高 设为h 作c1h oc于h 则c1h h 且 题型三空间几何体展开图的应用 例3 如右图所示 在长方体abcd a b c d 中 ab 2 ad 4 aa 3 求在长方体表面上连结a c 两点间诸曲线的长度的最小值 解 由于在长方体表面上连结a c 两点 可以通过a b b b bc三段进行连结 故分三种情况讨论 1 若由a跨过a b 与c 连结 即将上底面a b c d 翻折到与abb a 在同一平面内 如下图 1 则 误区警示 多面体沿着各棱的展开有时图形类似 有时图形完全不一样 应区别对待 本题长 宽 高都不相等 因而求ac 的最小值应为三种情况讨论比较才能得到 变式训练3 如下图 已知三棱锥a bcd的底面是等边三角形 三条侧棱长都等于1 bac 30 m n分别在棱ac和ad上 求bm mn nb的最小值 解 将三棱锥a bcd的侧面沿ab展开在同一平面上 如下图 ab ac ad 1 bc cd abc acd bac cad 30 同理 dab 30 bab bac cad dab 90 由图可知 当点b m n b 共线时 bm mn nb取最小值 在 abb 中 ab ab 1 bab 90 bb bm mn nb的最小值为 易错探究 例4 把长和宽分别为6和3的矩形卷成一个圆柱的侧面 求这个圆柱的体积 错解 设卷成的圆柱的底面半径为r 母线长为l 则2 r 6 l 3 所以所以v圆柱 r2 l 错因分析 错解的原因是把宽当成母线 沿着矩形的长卷成圆柱 没有考虑到也可以沿着矩形的宽卷成圆柱 基础强化 1 若一个圆锥的轴截面是等边三角形 其面积为 则这个圆锥的全面积是 a 3 b 3 c 6 d 9 解析 设圆锥的母线长为l 则由得l 2 且圆锥的底面周长为2 所以圆锥的全面积 答案 a 2 若正方体的全面积为72 则它的对角线的长为 解析 设正方体的棱长为a 则6a2 72 所以对角线长为 答案 d 3 长方体过一个顶点的三条棱长的比是1 2 3 对角线的长是则这个长方体的体积是 a 6b 12c 24d 48 解析 设长方体的三条棱长分别为a 2a 3a a 0 由题意得a2 2a 2 3a 2 解得a 2 体积v a 2a 3a 6a3 48 答案 d 4 如右图所示 在棱长为4的正方体abcd a1b1c1d1中 p是a1b1上一点 且pb1 a1b1 则多面体p bcc1b1的体积为 c 4d 16 解析 vp bcc1b1 4 4 1 答案 b 5 若圆锥的侧面展开图是圆心角为120 半径为l的扇形 则这个圆锥的表面积与侧面积的比是 a 3 2b 2 1c 4 3d 5 3 答案 c 6 等边三角形abc的边长为a 直线l过a且与bc垂直 将 abc绕直线l旋转一周所得的几何体的表面积是 解析 依题意知 圆锥的母线长为a 底面半径为周长为a 圆锥的表面积 7 已知棱长为1 各面都是正三角形的四面体 则它的表面积是 8 如右图所示 四棱锥v abcd的底面为边长等于2cm的正方形 顶点v与底面正方形中心的连线为棱锥的高 侧棱长vc 4cm 求这个四棱锥的体积 解 连结ac bd相交于点o 连结vo 则vo 底面abcd 如下图 ab bc 2cm 在正方形abcd中 在rt voc中求得 故这个四棱锥的体积为 能力提升 9 圆台上 下底面积分别为 4 侧面积为6 求这个圆台的体积 解 设圆台的上 下底面半径分别为r r 母线长为l 高为h 轴截面如下图所示 由题意可得 r2 r 1 r2 4 r 2 由 rl rl 6 l 2 v台 10 已知某几何体的俯视图是如下图所示的矩形 正视图 或称主视图 是一个底边长为8 高为4的等腰三角形 侧视图 或称左视图 是一个底边长为6 高为4的等腰三角形 1 求该几何体的体积v 2 求该几何体的侧面积s 解 由已知可得该几何体是一个底面为矩形 高为4 顶点在底面的射影是矩形中心的四棱锥 1 v 8 6 4 64 2 该四棱锥有两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论