数学人教版七年级下册实数概念.docx_第1页
数学人教版七年级下册实数概念.docx_第2页
数学人教版七年级下册实数概念.docx_第3页
数学人教版七年级下册实数概念.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6.3 实数第1课时 实数教学目标【知识与技能】1.了解无理数和实数的概念,会将实数按一定的标准进行分类.2.知道实数与数轴上的点一一对应.【过程与方法】1.了解无理数和实数的概念,适时拓展数的观念.2.通过学习“实数与数轴上的点的一一对应关系”,渗透“数形结合”思想.【情感态度】从分类、集合的思想中领悟数学的内涵,激发兴趣.【教学重点】正确理解实数的概念.【教学难点】对“实数与数轴上的点一一对应关系”的理解.一、 复习有理数(个人展示)(1) 什么是有理数?(2) 小数都能化成分数吗?二、预习检测(自我检测)例1 判断下列各数中,哪些是有理数?哪些是无理数?你的依据是什么?机会都是留给有准备的人二、 课堂学习流程(1) 观察下列有理数写成小数的形式,思考:有理数和小数之间的关系。(对子学习,共同展示)(2)请用计算器把 和 写成小数的形式,这样的小数有怎样的特点?像这样的数我们把它叫什么数?(对子讨论,并一起展示)(3)你能举出一些无理数吗?(个人展示)(4)我们把哪些数统称为实数?你能把实数进行一种以上的分类吗?(四人一组进行讨论,并组织发言补充)(5)把下列各数分别填入相应的集合内:(相邻两个3之间的7的个数逐次加1)有理数集合 无理数集合 由学生完成填空后探究:每个有理数都可以用数轴上的点表示,无理数是否也可以用数轴上的点表示呢?例3 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O表示的数是什么?由这个图示你能想到什么?解:由图可知,OO的长是这个圆的周长,所以O点表示的数是,由此可知,数轴上的点可以表示无理数.结合教材内容,让学生找到数轴上表示2,3,等的点.【教学说明】每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数.实数与数轴上的点是一一对应的.【教学说明】判断一个数是不是无理数,不能只看最初形式,而要看化简后的最后结果.三、运用新知,深化理解1.下列说法中正确的是( )A.是一个无理数B.在中x1C.8的立方根是2D.若点P(2,a)和点Q(b,-3)关于y轴对称,则a+b的值是52.下列各数中,不是无理数的是( )3.下列各数中:其中无理数有 .有理数有 .4.判断正误.(1)有理数包括整数、分数和零.(2)不带根号的数是有理数.(3)带根号的数是无理数.(4)无理数都是无限小数.(5)无限小数都是无理数.【教学说明】学生自主完成,教师巡视,然后集体订正.【答案】1.B 2.D四、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?你还有哪些问题,与同伴交流.1.布置作业:从教材“习题6.3”中选取.2.完成练习册中本课时的练习.本课时应从注重学生认知水平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论