无理数.实数概念.3.1实数_导学案.doc_第1页
无理数.实数概念.3.1实数_导学案.doc_第2页
无理数.实数概念.3.1实数_导学案.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

63实数一、学习目标:1了解实数的意义,能对实数按要求进行分类。2了解实数范围内,相反数、倒数、绝对值的意义。3了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。二、自主学习(一)1填空:(有理数的两种分类)有理数 有理数 2. 把下列有理数写成小数的形式,你有什么发现? 三、自主探究(二)1归纳: 任何一个有理数都可以写成_小数或_小数的形式。反过来,任何_小数或_小数也都是有理数观察 通过前面的探讨和学习,我们知道,很多数的_根和_根都是_小数, _小数又叫无理数,也是无理数结论: _和_统称为实数你能举出一些无理数吗?2试一试 把实数分类 像有理数一样,无理数也有正负之分。由于非0有理数和无理数都有正负之分,所以实数也可以这样分类: 实数 3我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O的坐标是多少?从图中可以看出OO的长时这个圆的周长_,点O的坐标是_这样,无理数可以用数轴上的点表示出来(2)总结: 事实上,每一个无理数都可以用数轴上的_表示出来,这就是说,数轴上的点有些表示_,有些表示_。当从有理数扩充到实数以后,实数与数轴上的点就是_的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的_都是表示一个实数。四,合作探究1、把下列各数分别填入相应的集合里:有理数 无理数 整数 分数 正数 负数 2.(1)有没有最小的正整数?有没有最小的整数?(2)有没有最小的有理数?有没有最小的无理数?(3)有没有最小的正实数?有没有最小的实数? ( )4、 课堂小结 这节课你有什么新发现?知道了哪些新知识? 无理数的特征:1圆周率及一些含有的数 2开不尽方的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论