北京四中高三数学总复习 充分条件与必要条件件提高知识讲解 .doc_第1页
北京四中高三数学总复习 充分条件与必要条件件提高知识讲解 .doc_第2页
北京四中高三数学总复习 充分条件与必要条件件提高知识讲解 .doc_第3页
北京四中高三数学总复习 充分条件与必要条件件提高知识讲解 .doc_第4页
北京四中高三数学总复习 充分条件与必要条件件提高知识讲解 .doc_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

充分条件与必要条件【学习目标】1理解充分条件、必要条件、充要条件的定义;2会求某些简单问题成立的充分条件、必要条件、充要条件;3会应用充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件表达命题之间的关系.4.能够利用命题之间的关系判定充要关系或进行充要性的证明.【要点梳理】要点一、充分条件与必要条件 充要条件的概念符号与的含义 “若,则”为真命题,记作:;“若,则”为假命题,记作:.充分条件、必要条件与充要条件若,称是的充分条件,是的必要条件.如果既有,又有,就记作,这时是的充分必要条件,称是的充要条件.要点诠释:对的理解:指当成立时,一定成立,即由通过推理可以得到.“若,则”为真命题;是的充分条件;是的必要条件以上三种形式均为“”这一逻辑关系的表达.要点二、充分条件、必要条件与充要条件的判断从逻辑推理关系看命题“若,则”,其条件p与结论q之间的逻辑关系若,但,则是的充分不必要条件,是的必要不充分条件;若,但,则是的必要不充分条件,是的充分不必要条件;若,且,即,则、互为充要条件;若,且,则是的既不充分也不必要条件.从集合与集合间的关系看若p:xa,q:xb, 若ab,则是的充分条件,是的必要条件;若a是b的 真子集,则是的充分不必要条件;若a=b,则、互为充要条件;若a不是b的子集且b不是a的子集,则是的既不充分也不必要条件.要点诠释:充要条件的判断通常有四种结论:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.判断方法通常按以下步骤进行:确定哪是条件,哪是结论;尝试用条件推结论,再尝试用结论推条件,最后判断条件是结论的什么条件.要点三、充要条件的证明 要证明命题的条件是结论的充要条件,既要证明条件的充分性(即证原命题成立),又要证明条件的必要性(即证原命题的逆命题成立)要点诠释:对于命题“若,则”如果是的充分条件,则原命题“若,则”与其逆否命题“若,则”为真命题;如果是的必要条件,则其逆命题“若,则”与其否命题“若,则”为真命题;如果是的充要条件,则四种命题均为真命题.【典型例题】类型一:充分条件、必要条件、充要条件的判定例1. “x0”的_条件【解析】,故,但,“x0”的充分而不必要条件【点评】判定充要条件的基本方法是定义法,即“定条件找推式下结论”;有时需要将条件等价转化后再判定.举一反三:【变式1】指出下列各题中,是的什么条件?(1) : , : ;(2) : ,: 抛物线过原点(3) : 一个四边形是矩形,: 四边形的邻边相等【答案】(1): 或, : 且,是的必要不充分条件;(2)且,是的充要条件;(3)且,是的既不充分条件也不必要条件.【变式2】判断下列各题中是的什么条件.(1):且, :(2):, : .【答案】(1)是的充分不必要条件.且时,成立;反之,当时,只要求、同号即可.必要性不成立.(2)是的既不充分也不必要条件在的条件下才有成立.充分性不成立,同理必要性也不成立.【变式3】设甲,乙,丙是三个命题,如果甲是乙的充要条件,丙是乙的充分非必要条件,那么丙是甲的( ).a、充分非必要条件 b、必要非充分条件c、充要条件 d、既不充分也不必要条件【答案】a;【解析】由已知有甲乙,丙乙且乙丙.于是有丙乙甲,且甲丙(否则若甲丙,而乙甲丙,与乙丙矛盾)故丙甲且甲丙,所以丙是甲的充分非必要条件.例2.设条件甲为“”, 条件乙为“”那么甲是乙的( )a、充分不必要条件 b、必要不充分条件c、充要条件 d、既不充分也不必要条件【答案】b【解析】分别解不等式得条件甲为,乙为,ba所以甲是乙的必要不充分条件【点评】先对已知条件进行等价转化化简,然后由定义判断;不等式(解集)表示的条件之间的相互关系可以借助集合间的关系判断.举一反三:【高清课堂:充分条件与必要条件394804例2】【变式1】已知p:0x3,q:|x-1|2,则p是q的( )(a)充分不必要条件 (b)必要不充分条件(c)充要条件 (d)既不充分也不必要条件xo3-112pq【答案】q:|x-1|2,解得-1x3,亦即q:-1x3.如图,在数轴上画出集合p=(0,3),q=(-1,3),从图中看pq, pq,但qp,所以选择(a).【变式2】下列各小题中,是的什么条件?(在“充分非必要条件”,“必要非充分条件”,“充要条件”“既不充分也不必要条件”中选一种)(1) :,:或;(2) :, :或;(3):,:关于的方程有实数根.【答案】(1) ,即:,又且,所以是的充分不必要条件.(2) , 或,即:或,又且,即所以是的充分必要条件.(3)关于的方程有实数根, 即,:,又且,故是的必要不充分条件.【高清课堂:充分条件与必要条件394804例3】【变式3】设,则条件“”的一个必要不充分条件为( ) a. b. c. d.【答案】a类型二:充要条件的探求与证明例3. 设x、yr,求证:|x+y|=|x|+|y|成立的充要条件是xy0.【解析】(1)充分性:若xy=0,那么x=0,y0;x0,y=0;x=0,y=0,于是|x+y|=|x|+|y|如果xy0,即x0,y0或x0,y0,当x0,y0时,|x+y|=x+y=|x|+|y|.当x0,y0时,|x+y|=(x+y)=x+(y)=|x|+|y|.总之,当xy0时,有|x+y|=|x|+|y|.(2)必要性:由|x+y|=|x|+|y|及x、yr,得(x+y)2=(|x|+|y|)2,即x2+2xy+y2=x2+2|xy|+y2,|xy|=xy,xy0.综上可得|x+y|=|x|+|y|成立的充要条件是xy0.【点评】充要条件的证明关键是根据定义确定哪是已知条件,哪是结论,然后搞清楚充分性是证明哪一个命题,必要性是证明哪一个命题.判断命题的充要关系有三种方法:(1)定义法;(2)等价法,即利用与;与;与的等价关系,对于条件或结论是不等关系(否定式)的命题,一般运用等价法.(3)利用集合间的包含关系判断,若,则a是b的充分条件或b是a的必要条件;若a=b,则a是b的充要条件.举一反三:【变式1】已知a, b, c都是实数,证明ac0是关于x的方程ax2+bx+c=0有一个正根和一个负根的充要条件.【答案】(1)充分性:若ac0,方程ax2+bx+c=0有两个相异实根,设为x1, x2, ac0, x1x2=0, x20,则x1x2=0,ac0综上可得ac0是方程ax2+bx+c=0有一个正根和一个负根的充要条件.【变式2】求关于x的方程ax2+2x+1=0至少有一个负的实根的充要条件.【答案】(1)a=0时适合.(2)当a0时,显然方程没有零根,若方程有两异号的实根,则必须满足;若方程有两个负的实根,则必须满足综上知,若方程至少有一个负的实根,则a1;反之,若a1,则方程至少有一个负的实根,因此,关于x的方程ax2+2x+1=0至少有一个负的实根的充要条件是a1类型三:充要条件的应用例4.已知若p是q的充分不必要条件,求m的取值范围.【答案】【解析】由解得又由解得p是q的充分不必要条件,所以或解得【点评】解决这类参数的取值范围问题,应尽量运用集合法求解,即先化简集合a、b,再由它们的因果关系,得到a与b的包含关系,进而得到相关不等式组,解之即可.举一反三:【变式1】已知命题p:1cx0),命题q:x7或x1,并且p是q的既不充分又不必要条件,则c的取值范围是_【答案】0c2【解析】命题p对应的集合ax|1cx0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论