




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
菱形课后练习题一: 如图,ac是菱形abcd的对角线,e、f分别是ab、ac的中点,如果ef=3,那么菱形abcd的周长是 题二: 如图,菱形花坛abcd的边长为6m,a=120,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()a12m b20m c22m d24m题三: 能判定一个四边形是菱形的条件是()a对角线互相平分且相等b对角线互相垂直且相等c对角线互相垂直且对角相等d对角线互相垂直,且一条对角线平分一组对角题四: 下列给出的条件中,能识别一个四边形是菱形的是()a有一组对边平行且相等,有一个角是直角b两组对边分别相等,且有一组邻角相等c有一组对边平行,另一组对边相等,且对角线互相垂直d有一组对边平行且相等,且有一条对角线平分一个内角题五: 如图,菱形abcd中,dfab交ac于点e,垂足为f,de= 4,求be的长度题六: 如图为正三角形abc与正方形defg的重叠情形,其中d、e两点分别在ab、bc上,且bd=be若ac=18,gf=6,求点f到ac的距离题七: 如图,顺次连接四边形abcd各中点得四边形efgh,要使四边形efgh为菱形,应添加的条件是()aabdc bab=dc cacbd dac=bd题八: 如图,在四边形abcd中,e、f、g、h分别是ab、bd、cd、ac的中点,要使四边形efgh是菱形,则四边形abcd只需要满足一个条件,是()a四边形abcd是梯形 b四边形abcd是菱形c对角线ac=bd dad=bc题九: 红丝带是关注艾滋病防治问题的国际性标志将宽为1cm的红丝带交叉成60角重叠在一起(如图),判断重叠四边形是什么特殊四边形?证明你的结论题十: 将平行四边形纸片abcd按如图方式折叠,使点c与a重合,点d落到d处,折痕为ef,连接cf,判断四边形aecf是什么特殊四边形?证明你的结论题十一: 如图所示,在rtabc中,abc=90将rtabc绕点c顺时针方向旋转60得到dec,点e在ac上,再将rtabc沿着ab所在直线翻转180得到abf,连接ad求证:四边形afcd是菱形题十二: rtabc中,acb=90,过点c的直线mab,d为ab边上一点,过点d作debc,交直线m于e,垂足为f,连接cd、be(1)求证:ce=ad;(2)当d在ab中点时,四边形becd是什么特殊四边形?说明你的理由题十三: 我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形在学习中点四边形时,小明和小亮产生了很大的意见分歧:小明说:如果一个四边形的中点四边形是菱形,则原四边形一定是矩形;小亮说:如果一个四边形的中点四边形是菱形,则原四边形一定是对角线相等的四边形,而不一定是矩形(1)你认为谁的观点错误的,请画图举一个反例,并作简单说明;(2)如果该四边形的对角线互相垂直,则中点四边形为_;(3)如果该四边形的对角线相等,则中点四边形为_;(4)如果该四边形的对角线互相垂直且相等,则中点四边形为_题十四: 阅读材料:我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;请解决以下问题:如图,我们把满足ab=ad、cb=cd且abbc的四边形abcd叫做“筝形”;(1)写出筝形的两个性质(定义除外);(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明菱形课后练习参考答案题一: 24详解:ac是菱形abcd的对角线,e、f分别是ab、ac的中点,ef是abc的中位线,ef=bc=3,bc=6,菱形abcd的周长是46=24题二: b详解:连接ac,已知a=120,abcd为菱形,则b=60,从而得出abc为正三角形,以abc的顶点所组成的小三角形也是正三角形,所以正六边形的边长是abc边长的,则种花部分图形共有10条边,所以它的周长为610=20m,故选b题三: c详解:对角线互相垂直平分的四边形是菱形,a、b、d都不正确;对角相等的四边形是平行四边形,而对角线互相垂直的四边形是菱形,c正确故选c题四: d详解:a错误,可判定为矩形,而不一定是菱形;b错误,可判定为矩形,而不一定是菱形;c错误,可判定为等腰梯形,而不是菱形;d正确,有一组对边平行且相等可判定为平行四边形,有一条对角线平分一个内角,则可判定有一组邻边相等,而一组邻边相等的平行四边形是菱形故选d题五: 4详解:abcd是菱形,ad=ab,dae=bae,在ade和abe中,ad=ab,dae=bae,ae=ae,adeabe,de=be= 4,即be的长度为4题六: 6-6详解:如图,过点b作bhac于h,交gf于k,abc是等边三角形,a=abc=60,bd=be,bde是等边三角形,bde=60,a=bde,acde,四边形defg是正方形,gf=6,degf,acdegf,kh=18-6-6=9-3-6=6-6,f点到ac的距离为6-6题七: d详解:连ac,bd,如图,e、f、g、h为四边形abcd各中点,efac,ef=ac,hgac,hg=ac,四边形efgh为平行四边形,要使四边形efgh为菱形,则ef=eh,而eh=ac,ac=bd当abdc和ab=dc,只能判断四边形efgh为平行四边形,所以a、b选项错误;当acbd,只能判断四边形efgh为矩形,所以c选项错误;当ac=bd,可判断四边形efgh为菱形,所以d选项正确故选d题八: d详解:在四边形abcd中,e、f、g、h分别是ab、bd、cd、ac的中点,efad,hgad,efhg,同理,hegf,四边形efgh是平行四边形;a若四边形abcd是梯形时,adcd,则ghfe,这与平行四边形efgh的对边gh=fe相矛盾,故本选项错误;b若四边形abcd是菱形时,点efgh四点共线,故本选项错误;c若对角线ac=bd时,四边形abcd可能是等腰梯形,证明同a选项,故本选项错误;d当ad=bc时,gh=gf;所以平行四边形efgh是菱形,故本选项正确;故选d题九: 菱形详解:如图,过点a作aebc于e,afcd于f,因为红丝带宽度相同,abcd,adbc,ae=af,四边形abcd是平行四边形sabcd=bc ae=cd af,又ae=af,bc=cd,四边形abcd是菱形 题十: 菱形详解:四边形aecf是菱形证明:由折叠可知:ae=ec,aef=cef,四边形abcd是平行四边形,adbc,cef =afe,aef =afe,af=ae,ae=ec,af=ec,又afec,四边形aecf是平行四边形,af=ae,平行四边形aecf是菱形题十一: 见详解详解:rtdec是由rtabc绕c点旋转60得到,ac=dc,acb=acd=60,acd是等边三角形,ad=dc=ac,又rtabf是由rtabc沿ab所在直线翻转180得到,ac=af,abf=abc=90,acb=acd=60,afc是等边三角形,af=fc=ac,ad=dc=fc=af,四边形afcd是菱形题十二: 见详解详解:(1)证明:直线mab,ecd=adc,又acb=90,debc,deac,edc=acd,cd为公共边,edcacd,ce=ad;(2)当d在ab中点时,四边形becd是菱形证明:d是ab中点,由(1)知deac,f为bc中点,即bf=cf,直线mab,ecf=dbf,bfd=cfe,bfdcfe,df=ef,已知debc,bc和de垂直且互相平分,故四边形becd是菱形题十三: 见详解详解:(1)我认为小明的观点是错误的,反例如图所示,在等腰梯形abcd中,ac=bd,m、q是ab、ad的中点,mqbd,mq=bd,同理npbd,np=bd,可得四边形mnpq是平行四边形,再由mn=pn可得四边形mnpq是菱形;(2)四边形的对角线互相垂直,它的中点四边形为矩形;(3)四边形的对角线相等,它的中点四边形为菱形;(4)四边形的对角线互相垂直且相等,它的中点四边形为正方形题十四: 见详解详解:(1)性质1:只有一组对角相等,性质2:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 监理工程师课件更新情况
- 幼儿园免疫培训管理制度
- 二零二五版防火窗研发与技术成果转化合同
- 创新教学实践报告
- 地理与旅行知识融合
- 远程监测设备的安全护理标准
- 心脏并发症护理查房研究
- 术后疼痛管理与患者舒适度提升
- 呼吸机使用中的安全护理原则
- 中华人民共和国国家赔偿法基本知识测试题库含答案
- 建筑声学-11室内声学与厅堂音质设计
- 川藏公路简史
- 四川省乐山市马边彝族自治县2022-2023学年五年下学期期末学情跟踪监测数学试卷
- 外墙渗水维修处理施工方案
- 石油工程概论
- 工商银行对公客户经理(综合)试题
- 全国优质课一等奖中等职业学校公共艺术(音乐)教师微课堂比赛《中国民族民间舞》微课展示课件
- 2019新人教高一英语必修一-课本听力与视频材料原文(精校打印版)
- (完整版)第七章发酵食品加工技术
- 环境卫生学第十章-公共场所卫生-课件
- (完整版)人教版高中英语单词表(含音标)
评论
0/150
提交评论