




免费预览已结束,剩余7页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考专题突破二高考中的三角函数综合问题考点自测1已知向量(2,0),向量(2,2),向量(cos ,sin ),则向量与向量的夹角的取值范围是()a. b.c. d.答案d解析由题意,得:(2cos ,2sin ),所以点a的轨迹是圆(x2)2(y2)22,如图,当a位于使向量与圆相切时,向量与向量的夹角分别达到最大、最小值,故选d.2若函数f(x)(1tan x)cos x,0x,则f(x)的最大值为()a1 b2 c.1 d.2答案b解析依题意,得f(x)cos xsin x2sin(x),当0x时,x0.f(x)0在(,)恒成立,即4sin xa0在(,)恒成立,a(4sin x)min.又y4sin x在(,)的最小值接近2,故a2.题型一三角函数的图象与性质例1已知函数f(x)sin(x)sin(x)2cos2,xr(其中0)(1)求函数f(x)的值域;(2)若函数yf(x)的图象与直线y1的两个相邻交点间的距离为,求函数yf(x)的单调增区间解(1)f(x)sin xcos xsin xcos x(cos x1)2(sin xcos x)12sin(x)1.由1sin(x)1,得32sin(x)11,所以函数f(x)的值域为3,1(2)由题设条件及三角函数图象和性质可知,yf(x)的周期为,所以,即2.所以f(x)2sin(2x)1,再由2k2x2k(kz),解得kxk(kz)所以函数yf(x)的单调增区间为k,k(kz)思维升华三角函数的图象与性质是高考考查的重点,通常先将三角函数化为yasin(x)k的形式,然后将tx视为一个整体,结合ysin t的图象求解(2014四川)已知函数f(x)sin(3x)(1)求f(x)的单调递增区间;(2)若是第二象限角,f()cos()cos 2,求cos sin 的值解(1)因为函数ysin x的单调递增区间为2k,2k,kz,由2k3x2k,kz,得x,kz.所以函数f(x)的单调递增区间为,kz.(2)由已知,有sin()cos()(cos2sin2),所以sin coscos sin(cos cossin sin)(cos2sin2),即sin cos (cos sin )2(sin cos )当sin cos 0时,由是第二象限角,知2k,kz.此时,cos sin .当sin cos 0时,有(cos sin )2.由是第二象限角,知cos sin 0,此时cos sin .综上所述,cos sin 或.题型二三角函数和解三角形例2(2013重庆)在abc中,内角a,b,c的对边分别是a,b,c,且a2b2abc2.(1)求c;(2)设cos acos b,求tan 的值解(1)因为a2b2abc2,由余弦定理有cos c.又0c,故c.(2)由题意得.因此(tan sin acos a)(tan sin bcos b),tan2sin asin btan (sin acos bcos asin b)cos acos b,tan2sin asin btan sin(ab)cos acos b.因为c,所以ab,所以sin(ab),因为cos(ab)cos acos bsin asin b,即sin asin b,解得sin asin b.由得tan25tan 40,解得tan 1或tan 4.思维升华三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和差公式的灵活运用是解决此类问题的关键(2014重庆)在abc中,内角a,b,c所对的边分别为a,b,c,且abc8.(1)若a2,b,求cos c的值;(2)若sin acos2sin bcos22sin c,且abc的面积ssin c,求a和b的值解(1)由题意可知c8(ab).由余弦定理得cos c.(2)由sin acos2sin bcos22sin c,可得sin asin b2sin c,化简得sin asin acos bsin bsin bcos a4sin c.因为sin acos bcos asin bsin(ab)sin c,所以sin asin b3sin c.由正弦定理可知ab3c.又因为abc8,故ab6.由于sabsin csin c,所以ab9,从而a26a90,解得a3,b3.题型三三角函数和平面向量例3(2014山东)已知向量a(m,cos 2x),b(sin 2x,n), 函数f(x)ab,且yf(x)的图象过点(,)和点(,2)(1)求m,n的值;(2)将yf(x)的图象向左平移(0)个单位后得到函数yg(x)的图象,若yg(x)图象上各最高点到点(0,3)的距离的最小值为1,求yg(x)的单调递增区间解(1)由题意知f(x)abmsin 2xncos 2x.因为yf(x)的图象过点(,)和(,2),所以即解得(2)由(1)知f(x)sin 2xcos 2x2sin(2x)由题意知g(x)f(x)2sin(2x2)设yg(x)的图象上符合题意的最高点为(x0,2),由题意知x11,所以x00,即到点(0,3)的距离为1的最高点为(0,2)将其代入yg(x)得sin(2)1,因为00,|)在同一个周期内,当x时,y取最大值1;当x时,y取最小值1.(1)求函数的解析式yf(x);(2)函数ysin x的图象经过怎样的变换可得到yf(x)的图象;(3)若函数f(x)满足方程f(x)a(0a1),求在0,2内的所有实数根之和解(1)t2(),3,又sin()1,2k,kz.又|,得,函数的解析式为f(x)sin(3x)(2)ysin x的图象向右平移个单位,得到ysin(x)的图象,再由ysin(x)的图象上所有点的横坐标变为原来的,纵坐标不变,得到ysin(3x)的图象(3)f(x)sin(3x)的最小正周期为,f(x)sin(3x)在0,2内恰有3个周期,sin(3x)a(0a1)在0,2内有6个实数根且x1x2.同理,x3x4,x5x6,故所有实数根之和为.3(2013四川)在abc中,角a,b,c的对边分别为a,b,c,且2cos2cos bsin(ab)sin bcos(ac).(1)求cos a的值;(2)若a4,b5,求向量在方向上的投影解(1)由2cos2cos bsin(ab)sin bcos(ac),得cos(ab)1cos bsin(ab)sin bcos b,即cos(ab)cos bsin(ab)sin b.则cos(abb),即cos a.(2)由cos a,0ab,则ab,故b,根据余弦定理,有(4)252c225c,解得c1或c7(舍去)故向量在方向上的投影为|cos b.4.函数f(x)asin(x)(xr,a0,0,0)的部分图象如图所示(1)求f(x)的解析式;(2)设g(x)f(x)2,求函数g(x)在x,上的最大值,并确定此时x的值解(1)由题图知a2,则4,.又f()2sin()2sin()0,sin()0,0,0,即,f(x)2sin(x)(2)由(1)可得f(x)2sin(x)2sin(x),g(x)f(x)2422cos(3x),x,3x,当3x,即x时,g(x)max4.5已知向量a(cos ,sin ),b(cos x,sin x),c(sin x2sin ,cos x2cos ),其中0x.(1)若,求函数f(x)bc的最小值及相应x的值;(2)若a与b的夹角为,且ac,求tan 2的值解(1)b(cos x,sin x),c(sin x2sin ,cos x2cos ),f(x)bccos xsin x2cos xsin sin xcos x2sin xcos 2sin xcos x(sin xcos x)令tsin xcos x,则2sin xcos xt21,且1t.则yt2t12,1t,t时,ymin,此时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人买按揭车合同协议书
- 保险合同调解协议书
- T/CIQA 87-2024煤和焦炭试验配比和结果计算方法
- 官方的室内装修施工合同3篇
- 担保合同担保合同(一)6篇
- 精装房屋抵押借贷合同10篇
- 新建铁路工程劳务协作合同3篇
- 钢增强塑料复合管项目绩效评估报告
- 高效节能电动机项目绩效评估报告
- 小学第33个爱国卫生月主题活动
- 酒店筹开期操作手册(业主代表小组适用)
- 城市生活垃圾卫生填埋场运行管理培训
- 2023年《早》舒淇早期古装掰全照原创
- 部编版六年级语文下册根据语境写词语(小升初归类练习)
- 人工智能之知识库
- 张哲华鑫仔小品《警察和我》台词剧本手稿
- 中等职业学校英语课程标准(2020年版)(word精排版)
- 毕业生就业推荐表word模板
- 南京市特种设备安全监督检验研究院公开招考5名编外工作人员模拟检测试卷【共1000题含答案解析】
- 2023年八年级生物学业水平考试复习试卷
- YY/T 1685-2020气动脉冲振荡排痰设备
评论
0/150
提交评论