高考数学二轮复习 专题5 立体几何 第二讲 点、直线、平面之间的位置关系配套作业 文.doc_第1页
高考数学二轮复习 专题5 立体几何 第二讲 点、直线、平面之间的位置关系配套作业 文.doc_第2页
高考数学二轮复习 专题5 立体几何 第二讲 点、直线、平面之间的位置关系配套作业 文.doc_第3页
高考数学二轮复习 专题5 立体几何 第二讲 点、直线、平面之间的位置关系配套作业 文.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二讲 点、直线、平面之间的位置关系配套作业一、选择题1l1,l2是两条异面直线,直线m1,m2与l1,l2都相交,则m1,m2的位置关系是(d)a异面或平行 b相交c异面 d相交或异面解析:若m1,m2过直线l1或l2上的同一个点,则m1,m2相交;若m1,m2与直线l1,l2有四个不同交点,则m1,m2异面2在下列命题中,不是公理的是(a)a平行于同一个平面的两个平面相互平行b过不在同一条直线上的三点,有且只有一个平面c如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内d如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线3. (2015福建卷)若l,m是两条不同的直线,m垂直于平面,则“lm”是“l”的(b)a充分而不必要条件 b必要而不充分条件c充分必要条件 d既不充分也不必要条件解析: m,若l,则必有lm,即llm.但lm l, lm时,l可能在内故“lm”是“l”的必要而不充分条件4已知m,n为异面直线,m平面,n平面.直线l满足lm,ln,l,l,则(d)a,且lb,且 lc与相交,且交线垂直于ld与相交,且交线平行于l解析:结合给出的已知条件,画出符合条件的图形,然后判断得出根据所给的已知条件作图,如图所示由图可知与相交,且交线平行于l.故选d.5如图,已知六棱锥pabcdef的底面是正六边形,pa平面acd,pa2ab,则下列结论正确的是(d)apbadb平面pab平面pbcc直线bc平面paed直线pd与平面abc所成的角为45解析:解法一由三垂线定理,因ad与ab不相互垂直,排除a;作agpb于g,因平面pab平面abcdef,而ag在平面abcdef上的射影在ab上,而ab与bc不相互垂直,故排除b;由bcef,而ef是平面pae的斜线,故排除c.故选d.解法二设底面正六边形边长为a,则ad2a,pa2ab2a,由pa平面abc可知paad,又paad,所以直线pd与平面abc所成的角为pda45.故选d.6右图是某个正方体的侧面展开图,l1,l2是两条侧面对角线,则在正方体中,l1与l2(d)a互相平行 b异面且互相垂直c异面且夹角为 d相交且夹角为二、填空题7设和为不重合的两个平面,给出下列命题: 若内的两条相交直线分别平行于内的两条直线,则平行于;若外一条直线l与内的一条直线平行,则l和平行;设和相交于直线l,若内有一条直线垂直于l,则和垂直;直线l与垂直的充分必要条件是l与内的两条直线垂直上面命题中,真命题的序号是_解析: 考查立体几何中的直线、平面的垂直与平行判定的相关定理答案:8如图,边长为a的正三角形abc中线af与中位线de相交于g,已知aed是aed绕de旋转过程中的一个图形,现给出下列命题,其中正确的命题有_(填序号)动点a在平面abc上的射影在线段af上三棱锥afed的体积有最大值恒有平面agf平面bced异面直线ae与bd不可能互相垂直解析:由题意知afde,agde,fgde,de平面afg,de平面abc,平面afg平面abc,交线为af,均正确当ag平面abc时,a到平面abc的距离最大故三棱锥afed的体积有最大值故正确当af22ef2时,efae,即bdae,故不正确答案:三、解答题9(2015江苏卷)如图,在直三棱柱abca1b1c1中,已知acbc,bccc1,设ab1的中点为d,b1cbc1e.求证:(1)de平面aa1c1c;(2)bc1ab1.解析:(1)由题意知,e为b1c的中点,又d为ab1的中点,因此deac.又因为de平面aa1c1c,ac平面aa1c1c,所以de平面aa1c1c.(2)因为棱柱abca1b1c1是直三棱柱,所以cc1平面abc.因为ac平面abc,所以accc1.又因为acbc,cc1平面bcc1b1,bc平面bcc1b1,bccc1c,所以ac平面bcc1b1.又因为bc1平面bcc1b1,所以bc1ac.因为bccc1,所以矩形bcc1b1是正方形,因此bc1b1c.因为ac,b1c平面b1ac,acb1cc,所以bc1平面b1ac.又因为ab1平面b1ac,所以bc1ab1.10(2015北京卷)如图,在三棱锥中vabc,平面vab平面abc,vab为等边三角形,acbc且acbc,o,m分别为ab,va的中点(1)求证:vb平面moc;(2)求证:平面moc平面vab;(3)求三棱锥vabc的体积解析:(1)因为o,m分别为ab,va的中点,所以ombv.又因为vb平面moc,所以vb平面moc.(2)因为acbc,o为ab的中点,所以ocab.又因为平面vab平面abc,且oc平面abc,所以oc平面vab.所以平面moc平面vab.(3)在等腰直角三角形acb中,acb

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论