

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时 一元二次方程(1)学 习目 标1、使学生了解一元二次方程的意义。2、通过实际问题的情境,让学生感受到在的生活、学习中方程知识的实际意义。3、能够根据具体问题中的数学关系,列出程体会一元二次方程是刻画现实世界的一个有效的数学模型。学习重点建立一元二次方程的概念,认识一元二次方程的一般形式。学习难点在一元二次方程化成一般形式后,如何确定一次项和常数项。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题1】有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?【分析】设宽为x米,则列方程得:x(x+10)=900;整理得 x2+10x-900=0【问题2】学校图书馆去年年底有图书5万册,预计至明年年底增加到7.2万册,求这两年的年平均增长率。【分析】设这两年的年平均增长率为x,则列方程得:5(1+x)2=7.2;整理得 5 x2+10x-2.2=0【问题2】学校要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【分析】全部比赛共47=28场,设应邀请x个队参赛,则每个队要与其它 (x-1)队各赛1场,全场比赛共场,列方程得:;整理得 x2-x-56=0鼓励学生独立解决问题,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型二、自主交流 探究新知【探究】(1)上面三个方程左右两边是含未知数的 整式 (填 “整式”“分式”“无理式”);(2)方程整理后含有 一 个未知数;(3)按照整式中的多项式的规定,它们最高次数是 二 次。【归纳】1、一元二次方程的定义:等号两边都是 整式 ,只含有 一 个求知数(一元),并且求知数的最高次数是 2 (二次)的方程,叫做一元二次方程。2、一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式。其中ax2是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项。【注意】方程ax2+bx+c=0只有当a0时才叫一元二次方程,如果a=0,b0时就是一元一次方程了。所以在一般形式中,必须包含a0这个条件。【补充练习】判断下列方程,哪些是一元二次方程?(1)x32; ()x2;()5x2-2x-=x2-2x+; ()(x)2(x);()x2xx2; ()ax2bxc主体活动,探索一元二次方程的定义及其相关概念判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断。三、自主应用 巩固新知【例1】将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项【分析】一元二次方程的一般形式是ax2+bx+c=0(a0)因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等解:去括号,得:3x2-3x=5x+10移项合并同类项,得:3x2-8x-10=0其中二次项系数是3,一次项系数是-8,常数项是-10。【注意】二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号. 【例2】将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项【分析】通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式解:去括号,得:x2+2x+1+ x2-4=1移项合并同类项,得:2x2+2x-4=0其中二次项是2x2,二次项系数是2,一次项是2x,一次项系数是-8,常数项是-10。【例3】求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程【分析】要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可证明:m2-8m+17=(m-4)2+1 (m-4)20 (m-4)2+10,即(m-4)2+10 不论m取何值,该方程都是一元二次方程【练习】27 1 2 进一步巩固一元二次方程的基本概念四、自主总结 拓展新知1、a0是ax2+bx+c=0成为一元二次方程的必要条件,否则,方程ax2+bx+c=0变为bx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 村文化资产管理制度
- 吊葫芦吊带管理制度
- 库房排风扇管理制度
- 第6讲大一统多民族封建国家的发展与衰亡从隋唐盛世到五代十国课件-高三统编版必修中外历史纲
- 护理行为美的课件
- 生活小窍门小学生课件
- 2025年贵州省大数据项目创业计划书
- 小学六年级的题目及答案
- 小升初数学题库及答案
- 期末真题汇编 14 古诗歌鉴赏(含答案)-8年级语文下册(统编版)
- 304不锈钢管材质证明书
- 预拌混凝土及原材料检测理论考试题库(含答案)
- 公开招聘社区居委专职工作人员考试笔试、面试题集及相关知识(11套试题含答案)
- 《植物生理学》课件第三章+植物的光合作用
- 游泳馆网架翻新施工组织方案设计
- 有机化学所有的命名--超全.
- 引水罐的设计计算
- 三年级译林版英语下学期按要求写句子专项强化练习题
- 电缆接线工艺设计规范流程
- 中医经络减肥课件
- 5WHY分析法培训
评论
0/150
提交评论