材料力学-弯曲应力幻灯片.ppt_第1页
材料力学-弯曲应力幻灯片.ppt_第2页
材料力学-弯曲应力幻灯片.ppt_第3页
材料力学-弯曲应力幻灯片.ppt_第4页
材料力学-弯曲应力幻灯片.ppt_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter5Stressesinbeams 材料力学 MechanicsofMaterials 第五章弯曲应力 5 1引言 Introduction 5 2纯弯曲时的正应力 Normalstressesinpurebeams 5 3横力弯曲时的正应力 Normalstressesintransversebending 5 4梁的切应力及强度条件 Shearstressesinbeamsandstrengthcondition 第五章弯曲应力 Stressesinbeams 5 5提高梁强度的主要措施 Measurestostrengthenthestrengthofbeams 一 弯曲构件横截面上的应力 当梁上有横向外力作用时 一般情况下 梁的横截面上既有弯矩M 又有剪力FS 5 1引言 Introduction 所以 在梁的横截面上一般既有正应力 又有切应力 二 分析方法 Analysismethod 简支梁CD段任一横截面上 剪力等于零 而弯矩为常量 所以该段梁的弯曲就是纯弯曲 Purebending 若梁在某段内各横截面的弯矩为常量 剪力为零 则该段梁的弯曲就称为纯弯曲 Purebending 三 纯弯曲 Purebending 5 2纯弯曲时的正应力 Normalstressesinpurebeams 一 实验 Experiment 1 变形现象 Deformationphenomenon 纵向线 相对转过了一个角度 仍与变形后的纵向弧线垂直 各横向线仍保持为直线 各纵向线段弯成弧线 横向线 2 提出假设 Assumptions 平面假设变形前为平面的横截面变形后仍保持为平面且垂直于变形后的梁轴线 b 单向受力假设纵向纤维不相互挤压 只受单向拉压 推论 必有一层变形前后长度不变的纤维 中性层 Neutralsurface 中性轴横截面对称轴 变形几何关系 静力关系 实验 二 变形几何关系 Deformationgeometricrelation 三 物理关系 Physicalrelationship 所以 Hooke sLaw 待解决问题 中性轴的位置 中性层的曲率半径 变形几何关系 静力关系 建立公式 实验 四 静力关系 Staticrelationship 横截面上内力系为垂直于横截面的空间平行力系 这一力系简化 得到三个内力分量 中性层的曲率半径 中性轴的位置 待解决问题 内力与外力相平衡可得 1 2 3 将应力表达式代入 1 式 得 将应力表达式代入 2 式 得 将应力表达式代入 3 式 得 中性轴通过横截面形心 自然满足 静力关系 实验 平面假设 单向受力假设 中性层 中性轴 中性轴过横截面形心 EIz称为抗弯刚度 Flexuralrigidity 纯弯曲时横截面上正应力的计算公式 M为梁横截面上的弯矩 y为梁横截面上任意一点到中性轴的距离 Iz为梁横截面对中性轴的惯性矩 1 应用公式时 一般将M y以绝对值代入 根据梁变形的情况直接判断 的正负号 以中性轴为界 梁变形后凸出边的应力为拉应力 为正号 凹入边的应力为压应力 为负号 2 最大正应力发生在横截面上离中性轴最远的点处 则公式改写为 1 当中性轴为对称轴时 矩形截面 实心圆截面 空心圆截面 z y 2 对于中性轴不是对称轴的横截面 当梁上有横向力作用时 横截面上既又弯矩又有剪力 梁在此种情况下的弯曲称为横力弯曲 Nonuniformbending 横力弯曲时 梁的横截面上既有正应力又有切应力 切应力使横截面发生翘曲 横向力引起与中性层平行的纵截面的挤压应力 纯弯曲时所作的平面假设和单向受力假设都不成立 一 横力弯曲 Nonuniformbending 虽然横力弯曲与纯弯曲存在这些差异 但进一步的分析表明 工程中常用的梁 纯弯曲时的正应力计算公式 可以精确的计算横力弯曲时横截面上的正应力 等直梁横力弯曲时横截面上的正应力公式为 二 公式的应用范围 Theapplicablerangeoftheflexureformula 1 在弹性范围内 Allstressesinthebeamarebelowtheproportionallimit 3 平面弯曲 Planebending 4 直梁 Straightbeams 2 具有切应力的梁 Thebeamwiththeshearstress 三 强度条件 Strengthcondition 梁内的最大工作应力不超过材料的许用应力 1 数学表达式 Mathematicalformula 对称截面梁 中性轴是对称轴 2 强度条件的应用 Applicationofstrengthcondition 2 设计截面 3 确定许可载荷 1 强度校核 要求分别不超过材料的许用拉应力 Allowabletensilestress 和许用压应力 Allowablecompressivestress 例1 矩形等截面梁 L 3m h 150mm b 100mm q 3kN m yk 50mm 10MPa 求危险截面上K点的正应力 k 并校核梁的正应力强度 解 1 外力分析 2 内力分析 M图 危险截面在L 2处 3 应力分析 4 强度校核 讨论 1 当已知梁截面上一点的正应力大小 其余各点的正应力均可用正比例关系求得 2 横截面上局部截面上的分布内力的合力和此部分内力对中性轴的合力偶矩 例2 钢质悬臂梁如图所示 170MPa 若横截面为 圆形 正方形 h b 2的矩形 工字钢 试分别选择尺寸 并比较耗费的材料 x M 40kN m 解 1 内力分析 作M图 Mmax 40kN m 2 强度计算 圆截面 正方形 h b 2的矩形 工字钢 查表 选20a号工字钢 Wz 237 103mm3 A4 3550mm2 A1 A2 A3 A4 1 0 894 0 709 0 252 材料耗费比 解 1 外力分析 2 内力分析 M图 可能的危险截面B D 例3 槽形截面铸铁外伸梁 已知 q 10kN m P 20kN Iz 4 0 107mm4 y1 60mm y2 140mm 35MPa 140MPa 试校核梁的正应力强度 2 内力分析 M图 可能的危险截面B D 3 危险点的确定 最大压应力点 b点 最大拉应力点 a或d点 4 应力分析 5 强度校核 强度满足 讨论 1 对于脆性材料必须要同时校核拉 压正应力强度 2 危险截面一般在峰值点或极值点 最好把各点的拉压最大应力计算出来 进行校核 不能遗漏 例4 AD梁由两根8号槽钢构成 B点由圆截面钢拉杆BC支承 已知d 20mm 梁和杆的 160MPa 求 q 解 1 外力分析 2 内力分析 M图 3 求许用 q 按梁的强度条件 按钢拉杆的强度条件 Wz 2 25 3cm3 例题1螺栓压板夹紧装置如图所示 已知板长3a 150mm 压板材料的弯曲许用应力 140MP 试计算压板传给工件的最大允许压紧力F 解 1 作弯矩图 2 求惯性矩 抗弯截面系数 3 求许可载荷 例题2T形截面铸铁梁的荷载和截面尺寸如图所示 铸铁的抗拉许用应力为 t 30MPa 抗压许用应力为 c 160MPa 已知截面对形心轴Z的惯性矩为Iz 763cm4 y1 52mm 校核梁的强度 F1 9kN F2 4kN A C B D 1m 1m 1m 解 B截面 C截面 例题3由n片薄片组成的梁 当每片间的磨擦力甚小时 每一薄片就独立弯曲 每一薄片中的最大正应力等于 近似地认为每片上承担的外力等于 z 若用刚度足够的螺栓将薄片联紧 杆就会象整体梁一样弯曲 最大正应力等于 一 梁横截面上的剪应力 Shearstressesinbeams 1 矩形截面梁 Beamofrectangularcrosssection 5 4梁的切应力及强度条件 Shearstressesinbeamsandstrengthcondition 1 两个假设 Twoassumptions a 剪应力与剪力平行 b 剪应力沿截面宽度均匀分布 即距中性轴等距离处剪应力相等 2 分析方法 Analysismethod a 用横截面m m n n从梁中截取dx一段 两横截面上的弯矩不等 所以两截面同一y处的正应力也不等 b 假想地从梁段上截出体积元素mB1在两端面mA1 nB1上两个法向内力不等 c 在纵截面上必有沿x方向的切向内力dFs 故在此面上就有切应力 根据假设横截面上距中性轴等远的各点处剪应力大小相等 各点的剪应力方向均与截面侧边平行 取分离体的平衡即可求出 3 公式推导 Derivationoftheformula 假设m m n n上的弯矩为M和M dM 两截面上距中性轴y1处的正应力为 1和 2 A 为距中性轴为y的横线以外部分的横截面面积 化简后得 由平衡方程 4 剪应力沿截面高度的变化规律 Theshear stressdistributionontherectangularcrosssection 沿截面高度的变化由静矩与y之间的关系确定 可见 剪应力沿截面高度按抛物线规律变化 y h 2 即在横截面上距中性轴最远处 0 y 0 即在中性轴上各点处 剪应力达到最大值 式中 A bh 为矩形截面的面积 截面静矩的计算方法 A 为所求切应力线以外部分的截面面积 为截面的形心坐标 2 工字形截面梁 工 sectionbeam 假设求应力的点到中性轴的距离为y 研究方法与矩形截面相类似 剪应力的计算公式也是 d 腹板的厚度 距中性轴为y的横线以外部分的横截面面积A 对中性轴的静矩 a 腹板上的剪应力沿腹板高度按二次抛物线规律变化 b 最大剪应力也在中性轴上 这也是整个横截面上的最大剪应力 假设 a 沿宽度kk 上各点处的剪应力均汇交于o 点 b 各点处切应力沿y方向的分量沿宽度相等 在截面边缘上各点的剪应力的方向与圆周相切 3 圆截面梁 Beamofcircularcrosssection 最大剪应力发生在中性轴上 4 圆环形截面梁 Circularpipebeam 图示为一段薄壁环形截面梁 环壁厚度为 环的平均半径为r0 由于 r0故可假设 a 横截面上剪应力的大小沿壁厚无变化 b 剪应力的方向与圆周相切 式中A 2 r0 为环形截面的面积 横截面上最大的剪应力发生中性轴上 其值为 z y r0 二 强度条件 Strengthcondition 三 需要校核切应力的几种特殊情况 1 梁的跨度较短 M较小 而FS较大时 要校核剪应力 2 铆接或焊接的组合截面 其腹板的厚度与高度比小于型钢的相应比值时 要校核剪应力 3 各向异性材料 如木材 的抗剪能力较差 要校核剪应力 例1 由三块某种材料的长条胶合而成的悬臂梁 尺寸如图所示 胶合层的拉剪强度较小 3 4MPa 试求其许用载荷P 并在此载荷作用下梁中的 max和相应的 max 1 外力分析 2 内力分析 Q M图 解 3 求 P 4 求最大剪应力 Sz 100 50 50 25000mm3 5 求最大正应力 注 若叠梁的板间接触面光滑无约束 则每层板承受的弯矩相等 例题4一简易起重设备如图所示 起重量 包含电葫芦自重 F 30kN 跨长l 5m 吊车大梁AB由20a工字钢制成 其许用弯曲正应力 170MPa 许用弯曲剪应力 100MPa 试校核梁的强度 解 此吊车梁可简化为简支梁 力P在梁中间位置时有最大正应力 a 正应力强度校核 由型钢表查得20a工字钢的 所以梁的最大正应力为 b 切应力强度校核 在计算最大剪应力时 应取荷载F在紧靠任一支座例如支座A处所示 因为此时该支座的支反力最大 而梁的最大切应力也就最大 据此校核梁的剪应力强度 以上两方面的强度条件都满足 所以此梁是安全的 解 1 计算支反力做内力图 例题5简支梁AB如图所示 l 2m a 0 2m 梁上的载荷为q 10kN m F 200kN 材料的许用应力为 160MPa 100MPa 试选择工字钢型号 2 根据最大弯矩选择工字钢型号 查型钢表 选用22a工字钢 其Wz 309cm3 3 校核梁的切应力 腹板厚度d 0 75cm 由剪力图知最大剪力为210kN 查表得 max超过 很多 应重新选择更大的界面 现以25b工字钢进行试算 所以应选用型号为25b的工字钢 例题6对于图中的吊车大梁 现因移动荷载F增加为50kN 故在20a号工字钢梁的中段用两块横截面为120mm 10mm而长度2 2mm的钢板加强加强段的横截面尺寸如图所示 已知许用弯曲正应力 152MPa 许用剪应力 95MPa 试校核此梁的强度 解加强后的梁是阶梯状变截面梁 所以要校核 3 F移至未加强的梁段在截面变化处的正应力 2 F靠近支座时支座截面上的剪应力 1 F位于跨中时跨中截面上的弯曲正应力 1 校核F位于跨中时截面时的弯曲正应力 查表得20a工字钢 最大弯矩值为 跨中截面对中性轴的惯性矩为 略去了加强板对其自身形心轴的惯性矩 抗弯截面系数 2 校核突变截面处的正应力 也就是校核未加强段的正应力强度 该截面上的弯矩为最大 从型钢表中查得20a工字钢 3 校核阶梯梁的切应力 F靠近任一支座时 支座截面为不利荷载位置 请同学们自行完成计算 5 5提高梁强度的主要措施 Measurestostrengthenthestrengthofbeams 一 降低梁的最大弯矩值 1 合理地布置梁的荷载 按强度要求设计梁时 主要是依据梁的正应力强度条件 2 合理地设置支座位置 当两端支座分别向跨中移动a 0 207l时 二 增大Wz 1 合理选择

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论