立体几何平行垂直结论.docx_第1页
立体几何平行垂直结论.docx_第2页
立体几何平行垂直结论.docx_第3页
立体几何平行垂直结论.docx_第4页
立体几何平行垂直结论.docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

立体几何专题解读基础知识回顾一、判定两线平行的方法1、 平行于同一直线的两条直线互相平行(线线)2、 垂直于同一平面的两条直线互相平行3、 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、 如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、 在同一平面内的两条直线,可依据平面几何的定理证明二、 判定线面平行的方法1、 据定义:如果一条直线和一个平面没有公共点2、 如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、 两平面平行,则其中一个平面内的直线必平行于另一个平面4、 平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、 平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、 垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、 定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、 如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、 如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、 如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、 如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法1、 定义:成角2、 直线和平面垂直,则该线与平面内任一直线垂直3、 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直七、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质1、 二面角的平面角为2、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围 1、异面直线所成的角的取值范围是: 2、直线与平面所成的角的取值范围是: 3、斜线与平面所成的角的取值范围是: 4、二面角的大小用它的平面角来度量;取值范围是: 方法总结1位置关系:(1)两条异面直线相互垂直 证明方法:证明两条异面直线所成角为90;证明线面垂直,得到线线垂直;证明两条异面直线的方向量相互垂直。(2)直线和平面相互平行证明方法:证明直线和这个平面内的一条直线相互平行;证明这条直线的方向量和这个平面内的一个向量相互平行;证明这条直线的方向量和这个平面的法向量相互垂直。(3)直线和平面垂直证明方法:证明直线和平面内两条相交直线都垂直,证明直线的方向量与这个平面内不共线的两个向量都垂直;证明直线的方向量与这个平面的法向量相互平行。(4)平面和平面相互垂直证明方法:证明这两个平面所成二面角的平面角为90;证明一个平面内的一条直线垂直于另外一个平面;证明两个平面的法向量相互垂直。2求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。(1)两条异面直线的距离求法:利用公式法。“一找二证三求”,三步都必须要清楚地写出来。(2)点到平面的距离求法:“一找二证三求”,三步都必须要清楚地写出来。等体积法。向量法。 3求角(1)两条异面直线所成的角求法:先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。(2)直线和平面所成的角求法:“一找二证三求”,三步都必须要清楚地写出来。向量法,先求直线的方向向量与平面的法向量所成的角,那么所要求的角为或。(3)平面与平面所成的角求法:“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。向量法,先求两个平面的法向量所成的角为,那么这两个平面所成的二面角的平面角为或。例题分析1、(将线面平行转变为线线平行):如图,在底面为平行四边形的四棱锥中,平面,且,点是的中点.()求证:平面;2、如图,在五面体中,点是矩形的对角线的交点,面是等边三角形,棱(1)证明/平面;(转化为线线平行)(2)设,证明平面(先转化为线线垂直,用线面垂直证线线垂直)3、(将线面平行转变为面面平行)如图,长方体ABCD-中,E、P分别是BC、的中点,M、N分别是AE、的中点,()求证:;4、如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,与相交于点,且顶点在底面上的射影恰为点,又.()设点M在棱上,且为何值时,平面。(向量法)5、(将面面垂直转变为线面垂直)如图,四棱锥的底面是正方形,点E在棱PB上.()求证:平面; ()(可用空间向量做)6、如图,P是边长为1的正六

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论