免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二年级数学学科导教案 课题:简单计数问题学案(第6讲)【教学目标】(1)掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题; (2)提高合理选用知识解决问题的能力【教学重点】排列、组合综合问题【教学难点】排列、组合综合问题【教学方法】多媒体教学【教学课时】1课时 【教学流程】一、课前预习指导:问题引入有十个年轻人在一家饭店吃饭,几个人商议想吃免费的午餐.老板说“你们每次来吃饭由我安排座位,如果我安排的座位与前面的哪一次完全重复了,就免去全部费用.”大家以为很快能吃到免费餐,结果一年以后还没吃到.你认为他们有可能吃到吗?问题1:上述情境中,老板安排10个人的座位共有种排法,就算每天吃一餐,也要近一万年才能排完,所以这10个人不可能吃到免费餐.问题2:分类加法计数原理与分步乘法计数原理的区别分类加法计数原理针对的是问题,完成一件事要分为若干类,各类的方法,各类中的各种方法也,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成,而分步乘法计数原理针对的是问题,完成一件事要分为若干步,各个步骤,完成任何其中的一步都完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.二、新课学习 问题3:排列、组合的概念与公式排列组合定义从n个不同元素中取出m(mn)个元素的,叫作从n个不同元素中取出m个元素的排列数从n个不同元素中取出m(mn)个元素,叫作从n个不同元素中取出m个元素的组合数公式=n(n-1)(n-2)(n-m+1)=(m,nn+,mn)=(m,nn+,mn)问题4:解决排列组合应用题常见的解题策略优先的策略;合理分类与准确分步的策略;排列、组合混合问题先选后的策略;难则、等价转化的策略;相邻问题处理的策略;不相邻问题处理的策略;分排问题处理的策略;定序问题先后处理的策略;“小集团”排列问题先后的策略.三典例分析例12名女生,4名男生排成一排 (1)2名女生相邻的不同排法共有多少种? (2)2名女生不相邻的不同排法共有多少种? (3)女生甲必须排在女生乙的左边(不一定相邻)的不同排法共有多少种?例2高二(1)班有30名男生,20名女生,从50名学生中 3名男生,2名女生分别担任班长、副班长、学习委员、文娱委员、体育委员,共有多少种不同的选法?例3某考生打算从所重点大学中选所填在第一档次的个志愿栏内,其中校定为第一志愿;再从所一般大学中选所填在第二档次的三个志愿栏内,其中、两校必选,且在前问:此考生共有多少种不同的填表方法?备注:课堂训练有只不同的试验产品,其中有只次品,只正品,现每次取一只测试,直到只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?教学反思练案1某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加当甲乙同时参加时,他们两人的发言不能相邻那么不同的发言顺序的种数为()a360 b520c600 d7202.九张卡片分别写着数字0,1,2,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,则可以组成的三位数的个数为().a.448 b.588c.602 d.6723某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?4有3张都标着字母a,6张分别标着数字1,2,3,4,5,6的卡片,若任取其中5张卡片组成牌号,求可以组成的不同牌号的总数能力提升1.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国五矿招聘真题及答案
- 校园保安公司合同范本
- 楼层加装电梯协议书
- 新教师劳务合同范本
- 民间转让土地合同范本
- 柳州吊车租用合同范本
- 教师初步就业协议书
- 木纹漆施工合同范本
- 水库开发承包合同范本
- 施工合同备案实习协议
- 2025贵阳市城市建设投资集团有限公司第二批招聘笔试考试参考试题附答案解析
- 承装修安全生产管理制度
- 2025物流师考试试题及答案物流师考试真题及答案
- 2025-2026学年天一大联考高二物理第一学期期末质量跟踪监视模拟试题含解析
- 配电室安全检查要点和监管培训
- 职业生涯规划计划书(34篇)
- 2025-2030中国眼视光行业现状态势与未来前景预测报告
- 《危险化学品目录(2022调整版)》
- 旋转机械振动故障诊断及分析课件
- 网约车资格证考试题库与答案
- 撬装加油站管理制度
评论
0/150
提交评论