




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
最权威的考研数学解题技巧帮助您用最短的时间取得高分第一部分:单选题的基本解题方法1.推演法:从题设条件出发,按惯常思维运用有关的概念、性质、定理等,经过直接的推理、演算,得出正确结论。适用对象:对于围绕基本概念设置的,或备选项为数值形式结果的或某种运算律形式或条件为某种运算形式的,常用推演法。个人观点:这种方法应该是最常用的,并且所有的题都能通过这种方法解出来,大家应该注重对基本概念和定理的记忆和运用。2.图示法:是指根据条件作出所研究问题的几何图形,然后借助几何图形的直观性,“看”出正确选项。适用对象:对于条件有明显的几何意义:如五性:对称性,奇偶性,周期性,凹凸性,单调性或平面图形面积,空间立体体积等,常用图示法。个人观点:相信大家一定很喜欢这种解题方法吧,画图直观,简便,但一定要注意图形的准确性,一点细微的概念差错也许会导致图形的错误。3.赋值法:是指用满足条件的“特殊值”,包括数值、矩阵、函数以及几何图形,通过推理演算,得出正确选项。适用对象:对于条件中有对任意,必特征的题目,或选项为抽象的函数形式结果的,可用赋值法。个人观点:赋值法应该说是一种特殊的,而且最快速的方法,可惜适用范围比较狭窄,所以大家在用这种方法时,一定要注意使用条件,不要遇到什么题都赋特殊值。4.排除法:从题设条件出发,或利用推演法排错,或利用赋值法排错,从而得出正确结论。适用对象:理论性较强,选项较抽象,且不易证明的题目。个人观点:根据我的观察有些选择题,尤其是理论性的选择题,有些答案是相互矛盾的,也就是说二者之中必有一对,所以建议大家遇到这种题时“聪明”一下。5.逆推法:将备选项依次代入题设条件的方法。适用对象:备选项为具体数值结果,且题干中含有合适的验证条件。个人观点:这种方法对于有些题还是比较好用的,缺点就是如果正确选项放在A还好,如果放在D,可能要浪费些时间了。第二部分:单选题1:只要遇到向量线性相关性问题,就要想到考查由其所构造的齐次线性方程组有无非零解,只要遇到某向量能否由一向量组线性表示问题,就要想到考查由其构造的非齐次方程组有无解。2:只要遇到无穷小比较或.0型未定式极限问题;或通项中含有“反对三指”函数关系的数项级数的敛散性问题,就要想到利用等价无穷小代换或皮亚诺型余项的泰勒公式求解。注:“反对三指”:反三角函数,对数函数,三角函数,指数函数。个人说明:大家应该熟记基本函数的泰勒公式,一般展开到三阶的就可以了。此外特提供不常见的三个重要展开式:arcsinx=x+x3/3!+o(x3) 注:此公式后项无此规律!tanx=x+x3+o(x3) 注:此公式后项无此规律!arctanx=x-x3+o(x3)例:当x-0时,x-arcsinx是的_无穷小,根据arcsinx的泰勒公式,可以轻松得到为同阶不等价无穷小。求极限十法3:无穷比无穷型未定式极限值取决于分子,分母最高幂次无穷大项之比,0比0型未定式极限值取决于分子,分母最低阶无穷小项之比。4:只要遇到由积分上限函数确定的无穷小的阶的问题,则想到: 积分上限变量与被积函数的无穷小因子可用等价无穷小代换之。 两个由积分上限函数确定的无穷小量,若其积分上限无穷小同阶,则其阶取决于被积函数无穷小的阶;若被积函数无穷小同阶或都不是无穷小,则其阶取决于积分上限无穷小的阶。5:由“你导我不导减去我导你不导”应想到“你我”做商的函数的导数的分子。注:你-f(x),我-g(x)。“你导我不导减去我导你不导”即f(x)/g(x)的导数的分子!6:只要遇到积分区间关于原点对称的定积分问题,就要想到先考查被积函数或其代数和的每一部分是否具有奇偶性。7:只要遇到类似B=AC形式的条件问题,就要想到考查乘积因子中有无可逆矩阵,以此获得B与A或B与C的秩的关系,进而讨论B与A或B与C的行(列)向量组的线性相关性的关系,或以B与A或B与C为系数矩阵的齐次线性方程组的解的关系。 越乘秩越小 灵活运用单位矩阵的方法:招之即来,挥之即去。8:只要遇到题干条件或备选项中有f(-x),-f(x),-f(-x)等,就要想到利用图形对称性求解。9:只要遇到对积分上限函数求导问题,就要想到被积函数中是否混杂着求导变量(显含或隐含)若显含时,即被积函数为求导变量函数与积分变量函数乘积(或代数和)若隐含时,则必须作第二类换元法,把求导变量从被积函数中“挖”出来,其出路只有两条:一是显含在被积函数中,二是跑到积分限上。10:只要遇到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程成本控制与预算管理
- 图形图像处理广告设计之广告设计基础07课件
- 建筑工程项目建筑拆除与清理方案
- 水痘麻疹预防课件
- 在C4D中创建简单几何小人围观小人轻松造45课件
- 助产技术上海济光护理助产专业教学库41课件
- 2025版复合材料护栏施工安全协议
- 2025版凯悦酒店消防安全隐患整改监督合同
- 2025版新能源汽车经销商合作协议范本
- 二零二五版智慧家居系统工程合同
- 肌张力障碍演示课件
- 锅炉安全技术规程标准(TSG 11-2020)
- 员工薪资调整审批表
- 中医妇科学:女性的生殖脏器
- 除锈剂MSDS参考资料
- 不等式及其基本性质说课课件
- 明渠均匀流计算公式
- 《纯物质热化学数据手册》
- 中国儿童严重过敏反应诊断与治疗建议(2022年)解读
- 电动力学-同济大学中国大学mooc课后章节答案期末考试题库2023年
- 2023年山东威海乳山市事业单位招聘带编入伍高校毕业生12人笔试备考题库及答案解析
评论
0/150
提交评论