全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中点四边形教学设计一、教学目标分析1知识与技能:利用三角形中位线定理判断中点四边形的形状;感受中点四边形的形状取决于原四边形的两条对角线的位置与数量关系;通过图形变换使学生掌握简单的添加辅助线的方法。2.过程与方法:(1)培养学生观察、发现、分析、探索知识的能力及创造性思维和归纳总结能力;(2)通过图形间既相互变化,又相互联系的内在规律的探究,进一步加深对“一般与特殊”关系的认识。3.情感态度与价值观(1)在探究过程中培养学生的参与、合作意识,激发学生探索数学的兴趣,体验数学知识获得的过程。(2)体会中点四边形的图形美,感受数学变化规律的奇妙。二、教学重点和难点重点:中点四边形性质的探索。难点:对确定中点四边形形状的主要因素的探究。三、教学过程一、创设情境1. 借助多媒体技术,展示两个任意四边形,顺次连接各边中点得一个新的四边形,再依次连接新四边形的各边中点,又得到一个新的四边形,不断继续下去,分别得到两组不同的四边形。2.活动二:请学生验证以上发现已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.引导学生观察这个特殊的平行四边形的产生过程,引出课题中点四边形。 3.归纳小结不同证明方法的共同之处。从而引出活动三:观察图片你有什么发现?四人小组合作探究。(中点四边形的形状与原四边形对角线的关系)矩形分别探索的中点四边形分别是什么四边形?正方形菱形 菱形 (四人小组合作交流)请学生验证以下发现:(1)菱形的中点四边形是矩形。(2)对角线互相垂直的四边形的中点四边形是矩形。 观察以上两个命题的想同处和不同之处,并对命题进行整理。 在以上总结的基础上请同学们观察以下三个明天的区别与联系,并整理:(1)矩形的中点四边形是菱形。(2)等腰梯形的中点四边形是菱形。(3)对角线相等的四边形的中点四边形是菱形。请小组代表对于中点四边形是正方形的两条发现给予整理并证明:(1)正方形的中点四边形是正方形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中生必背古诗词
- 初级茶艺师练习题库及答案
- 二甲双胍与抗肿瘤药物相互作用的监测建议
- 初三年级下册 数学基础练习含答案
- 论文评审意见反馈表【模板】
- 临床进阶技能模拟教学的分层提升路径
- 特应性皮炎日志卡
- 毕业设计说明书与毕业论文撰写的规范化要求内容
- 中国海洋大学数学与应用数学专业人才培养方案
- 本科毕业生开题报告、文献综述和外文翻译的评语要点
- 2025年宪法知识竞赛试题库(附答案)
- 2025合同协议品牌合作合同
- 2025年国家电网招聘考试(其他专业)综合试题及答案
- 私立医院薪酬管理与激励方案
- 杞柳编织课件
- ip形象设计合同范本
- 乙型肝炎病毒实验室检测技术规范(2025年修订版)(征求意见稿)
- 泵管垂直固定钢管架施工方案
- 疼痛科医生进修成果汇报
- 易制爆安全管理培训制度课件
- 2025电化学储能电站施工及验收规范
评论
0/150
提交评论