数学人教版八年级下册《勾股定理》教学设计.docx_第1页
数学人教版八年级下册《勾股定理》教学设计.docx_第2页
数学人教版八年级下册《勾股定理》教学设计.docx_第3页
数学人教版八年级下册《勾股定理》教学设计.docx_第4页
数学人教版八年级下册《勾股定理》教学设计.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理教学设计 一、内容和内容解析 1.内容 勾股定理的探究、证明及简单应用 。 2.内容解析 勾股定理:直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2 。勾股定理是中学数学重要定理之一,它揭示了直角三角形三边之间的数量关系。由此,在直角三角形中已知任意两边长,就可以求出第三边长。勾股定理常用来求解线段长度或距离问题。勾股定理的探究是从特殊的等腰直角三角形出发,到网格中直角三角形,再到一般的直角三角形,体现了从特殊到一般的探究过程和研究方法。证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,并以此引导学生发现证明勾股定理的思路。我国对勾股定理的研究和其他国家相比是比较早的,在国际上得到肯定。要通过我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感,2002年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材;要通过对勾股定理的探索和发现,培养学生学好数学的自信心。 课后习题17.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,3. 教学重点:勾股定理的内容4. 教学难点:勾股定理的论证二、目标及目标解析1、目标、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。、通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。2、目标解析、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。三、教学问题诊断分析勾股定理是关于直角三角形三边关系的一个特殊的结论。在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系。但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难。学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积。因此,在教学中需要先引导学生观察网格背景下的正方形的面积关系,然后思考去网格背景下的正方形的面积关系,再把这种关系表示成边长之间的关系,这有利于学生自然合理的发现和证明勾股定理。 四、教学支持条件分析根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式在教学过程中,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程五、教学过程设计(一)创设情境,导入新课问题1:请同学们欣赏2002年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。【设计意图】以国际数学家大会-“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识问题2:教师板书课题,介绍直角三角形各边的名称。提问:你知道哪些勾股定理的知识?视学生回答情况确定下步的教学方案1:如果学生能够说出勾股定理的相关知识,则直接进入下一环节的学习。方案2:如果学生有困难,则安排学生自学教材,再发表意见。学生发言,教师倾听。视学生回答的重点板书:勾三股四弦五等【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。(二)观察演算,合作探究,初具概念问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系?(故事附后)教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。教师利用ppt课件展示,提出问题;学生利用学习案中第1题自己进一步探究,交流;猜测验证。(学习案附后)【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。A问题5:你是怎样演算的?教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。视学生的学习情况确定下步的教学:方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。学生描述,教师板书。【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察-探究-整理-归纳的数学方法,体验学习的成功。(三)引导实验,探究论证,形成体系问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放画出图形并用面积法进行论证。学生或小组间进行合作实验,共同协作探究;教师巡视指导。【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。问题9:教师选取代表性的拼接方法,全班展示。【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。(四)归纳提高,巩固运用,形成能力问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。问题11:完成以下练习题教材69页第1题、学生独立完成;教师巡视指导,板书得数,介绍勾股数。【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。(五)归纳小结,反思提高问题12:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。布置作业教材70页2、8题。六、目标检测设计1在等边三角形中边长为10,则该三角形的面积是多少?【设计意图】综合题,考查等边三角形的三线合一、30度角所对的直角边等于斜边的一半、勾股定理、三角形面积知识;培养学生的转化意识。2在一个直角三角形中两边的长为3、4,则第三条边长度是多少?【设计意图】分类讨论。考查直角三角形的斜边最长及勾股定理。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论