




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程解法对课标的理解与把握课标中对于本节内容的要求是:理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。一元二次方程的解法是中学方程教学的重要环节。又是解决实际问题时被广泛应用的工具。学生情况分析本节课是一节复习课,是在学生学习了一元二次方程解法的基础上巩固学习的,学生对于直接开平方法,配方法,公式法,因式分解法都有了解,但对于如何灵活选择方法,还不是太熟练,因此,本节课目的就是让学生会根据不同的方程特点选用恰当的方法,使解题过程简单合理,通过揭示各种解法的本质联系,渗透降次化归的思想方法。一、教学目标:知识与技能:掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法求解方程。过程与方法:方程求解过程中注重方式、方法的引导,特殊到一般、字母表示数、整体代入等数学思想方法的渗透。情感态度与价值观:培养学生概括、归纳总结能力,通过揭示各种解法的本质联系,渗透降次化归的思想方法。二、重点、难点:1 重点:会根据不同的方程特点选用恰当的方法,使解题过程简单合理。2 难点:通过揭示各种解法的本质联系,渗透降次化归的思想。教学过程:复习提高:一元二次方程ax2+bx+c=0(a0)的解法有:(1)直接开平方法 (2)配方法 (3)公式法 (4)分解因式法教师口述:同学们,我们本节课一起来复习一元二次方程的解法。一元二次方程在中考中占有比较重要的地位,通过本节课的复习,我们要掌握解一元二次方程的四种方法以及各种解法的特点,会根据不同方程的特点,选用恰当的方法,从而准确、快速地解一元二次方程。讲解四种解法的特点:直接开平方法:易化为方程(其中X代表未知数或含有未知数的一次代数式,a代表常数)适合用直接开平方法来解。练习:用直接开平方法解方程(3x -2)-49=0 2、(3x -4)=(4x -3)因式分解法:因式分解法:因式分解法就是利用所学过的分解因式的知识来求解。一般步骤:将方程右边化为零;将方程左边分解为两个一次因式乘积;令每个因式分别等于零,得到两个一元一次方程;解这两个一元一次方程。总结成:一移、二分、三化、四解练习:()用提公因式法解方程:3x(x+2)=5(x+2)(2) 用平方差公式或完全公式解方程 x(x+2)+1=0配方法:配方法就是把方程配成一个完全平方式,再用直接开平法求解,配方时,方程左右两边同时【加上一次项系数一半的平方】。(方法:一除、二移、三配、四化、五解。)练习:用配方法解方程:公式法:对于一元二次方程abxc0(a0),当4ac0时,它的根是 。【易错警示】运用一元二次方程求根公式时一定要把方程化成一般形式练习:用公式法解方程:在总结完四种方法的特点之后,指出直接开平方法、配方法、公式法都是利用开方来对一元二次方程进行降次的,而因式分解法是利用了两数乘积为零则至少有一数为零进行降次的,虽然降次的原理不一样,但都是利用了降次的数学思想来解一元二次方程。学习致用:用恰当的方法解下列方程(学生只需要说出解法即可) -3x+1=0 3-1=0 -3+t=0 -4x=2 2x=0 5=8 3-y-1=0 2+4x-1=0 =2(x-2) 适合运用直接开平方法; 适合运用因式分解法; 适合运用公式法; 适合运用配方法. 总结升华:1、当给定的一元二次方程通过适当变形可化为型时,可选用直接开平方法。2、当一元二次方程的左边能分解因式时,用因式分解法比较简单。3、当一元二次方程中a,b,c不缺项且不易分解因式时,一般采用公式法。4、配方法也是一种重要的解题方法,但步骤较为繁琐,所以只要没要求时,一般不采用此法。但对于一次项系数较小而常数项较大时 ,可选用此法5、四种方法中,优先选取顺序为:直接开平方法、因式分解法、公式法、配方法巩固提高:选取适当的方法解方程:教学小结:通过这节课的学习,你学会了哪些知识呢?学生小组讨论,总结,并选取代表叙述。课堂练习请你选择最恰当的方法解下列一元二次方程1、3x -1=0 2、x(2x +3)=5(2x +3)3、x -4x-2=0 4、2 x -5x+1=0布置作业:将课堂上没有解完的方程做在作业本上。“一元二次方程的解法”复习课练习题课前练习:1、把方程(x+2)(x-3)=-5化为一般形式是 。2、方程2 x=8的根是 ;3、方程x-2x+1=4的根是 ;4、方程x-x+1=0的根是 ;5、用 法解方程(x-2)=2x-4比较简便。 方法小结:(观察和总结第2、3、4、5题)一元二次方程的四种方法,同学们通常是如何选择的呢?你能总结一下吗?(1)“直接开平方法”:(2) “配方法”:(3)“公式法”:(4)“分解因式法”:例题学习:用适当的方法解下列方程。(1) 2(x-5)-32=0 (2) x+2 x -399=0 (3) 5 x(x-3)=2 x -6 (4)2y+4 y=1三、课堂练习1、已知一元二次方程的两根是x = -3,x = 4,则这个方程可以是( )A、(x-3)(x+4)=0 B、(x+3)(x+4)=0 C、(x-3)(x-4)=0 D、(x+3)(x-4)=02、一元二次方程x-3 x=0的根是( )A、0 B、0或3 C、3 D、0或 -33、方程2 x(x-3)=5(x-3)的解是( )A、x = B、x =3 C、x =3 或x = D、 x = 4、用配方法解一元二次方程x+8 x+7=0,则下列方程变形正确的是( )A、(x-4)=9 B、(x+4)=9 C、(x+8)=57 D、(x-8)=165、解下列方程:(1)4(x+3)=100 (2)3 y+10 y+5=0(3)x+4 x-896=0 (4)7 x(5 x-2)-6(2-5 x)=0(5)x-2 x-3=0 (6)(x+2)2=(2x-4)2(7)3 x(x-1)=2-2 x (8)27-3(x+2)=0课后练习题;一、关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年西班牙语DELEA1级考试全真试卷
- 2025年西式面点师(五级)考试试卷在线评测
- 2025年事业单位招聘卫生类医学影像专业知识试卷(考试技巧秘籍资料)
- 课堂导练八上数学试卷
- 莫大入系考试数学试卷
- 南临城小学数学试卷
- 蒙城小学数学试卷
- 传染病PDCA管理课件
- 历下区期中数学试卷
- 贵州省遵义航天高中2026届高三上化学期中联考试题含解析
- 原发性骨质疏松症诊疗指南(2022)解读
- 新概念英语“第一册”单词对照表
- 新生儿早期基本保健(EENC)-新生儿早期基本保健(EENC)概述(儿童保健课件)
- 加油站高处坠落事故现场处置方案
- 比亚迪汉DM-i说明书
- 心肾综合征及其临床处理
- 男性性功能障碍专家讲座
- GB/T 1040.3-2006塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件
- 第37次全国计算机等级考试考务培训-课件
- 新生入学登记表新生入学情况表word模版
- 《高情商沟通》课件
评论
0/150
提交评论